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Abstract

Diabetic nephropathy (DN) remains a major complication of diabetes,

significantly impacting renal function. Emerging evidence suggests that NAD

metabolism plays a crucial role in DN pathogenesis. This study investigates the

roles of NADmetabolism-related genes in DN and how there are associated with

different disease subtypes. We analyzed gene expression data from DN-

associated datasets (GSE30528 and GSE30529) to identify differences in NAD

metabolism-related genes between normal and DN samples. We classified DN

into subtypes based on NAD gene expression and evaluated NAD scores using

ssGSEA. Immune cell infiltration and pathway analyses were assessed using

ssGSEA, Microenvironment Cell Populations-counter (MCPcounter), and Gene

Set Variation Analysis (GSVA). Key biomarker genes were identified usingmachine

learning algorithms and validated across multiple datasets. We further explored

the relationship between gene expression and kidney function using the

Nephroseq V5 tool. Thirteen differentially expressed NAD metabolism-related

genes were identified, with distinctive expression patterns observed between

normal and DN samples. Two distinct NAD-related subtypes were classified,

demonstrating significant differences in gene expression, immune cell infiltration,

and pathway activities. Immune-related pathways and cellular processes

exhibited varied enrichment between subtypes. Six key NAD metabolism-

related genes (FMO3, ALDH1A3, FMO5, TKT, LBR, HPGD) were identified as

potential biomarkers. Higher levels of FMO3, ALDH1A3, TKT, and LBR were

linked to worse kidney function, while FMO5 and HPGD were associated with

better kidney function. The study highlights the significant involvement of NAD

metabolism-related genes in DN pathogenesis and their association with disease

subtypes and renal function. The identified biomarkers could be targets for new

treatments and provide insight for future DN research.
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Impact statement

Our findings highlight the significant involvement of NAD

metabolism-related genes in DN pathogenesis and underscore

their potential as biomarkers for disease classification and

therapeutic intervention. This study provides a foundation for

future research into DN mechanisms and underscores the

translational potential of targeting NAD metabolism in DN

treatment strategies.

Introduction

Diabetic nephropathy (DN) is acknowledged as a primary

contributor to end-stage renal disease (ESRD) and a serious

complication of diabetes mellitus, impacting millions globally

[1]. The progressive characteristics of DN, which include

albuminuria, a diminishing glomerular filtration rate (GFR),

and eventual renal failure, place a significant strain on

healthcare systems and highlight the urgent need for effective

diagnostic and treatment approaches [2, 3]. The development of

DN is influenced by multiple factors and involves a complex

interaction of hemodynamic and metabolic elements. Persistent

hyperglycemia triggers various pathogenic mechanisms, such as

the activation of the renin-angiotensin-aldosterone system

(RAAS), increased formation of advanced glycation end

products (AGEs), oxidative stress, inflammation, and fibrosis

[4–6]. These interconnected processes lead to glomerular

hypertrophy, thickening of the basement membrane, loss of

podocytes, and tubulointerstitial fibrosis, ultimately resulting

in progressive renal impairment and ESRD [7, 8].

Nicotinamide adenine dinucleotide (NAD) metabolism plays

a pivotal role in cellular bioenergetics, redox reactions, and

signaling pathways [9]. NAD serves as a coenzyme in redox

reactions, crucial for ATP production and cellular metabolism

[10]. It also functions as a substrate for enzymes involved in post-

translational modifications, such as sirtuins and poly (ADP-

ribose) polymerases (PARPs), which are essential for DNA

repair, gene expression regulation, and maintaining genomic

stability [11, 12]. In the context of chronic kidney disease and

DN, NAD metabolism has garnered attention due to its

involvement in inflammatory and oxidative stress responses,

mitochondrial dysfunction, and cellular senescence [13, 14].

Studies have demonstrated that NAD levels decline with age

and in various disease states, including CKD and DN,

contributing to exacerbated renal damage and impaired renal

function [15–17]. NAD+ supplementation has been shown to

ameliorate kidney injury in animal models, highlighting its

potential as a therapeutic target [18].

However, despite these findings, the specific roles of NAD

metabolism-related genes in DN pathogenesis and their potential

as biomarkers for disease subtypes and renal function remain

poorly understood. This study aims to fill this knowledge gap by

investigating the expression and function of NAD metabolism-

related genes in DN. We will classify DN subtypes based on their

expression profiles and identify potential biomarkers that

correlate with renal function. Figure 1 presents the flow chart

of the study. Initially, NAD-related genes were extracted from the

Molecular Signatures Database and differentially expressed genes

(DEGs) were identified from datasets GSE30528 and GSE30529.

Combining these sources, 13 NAD metabolism-related genes

were determined. This set of genes underwent machine learning

analysis, resulting in the identification of 6 signature genes.

Concurrently, these 13 genes were used to classify samples

into NAD-related subtypes, followed by enrichment analysis,

immune correlation studies, and Gene Set Variation Analysis

(GSVA). Finally, the expression of six marker genes was validated

using additional datasets GSE96804, GSE104954, and

GSE142025. The correlation between these marker genes and

glomerular filtration rate (GFR) was assessed via the Nephroseq

V5 tool, comprehensively elucidating their underlying

mechanisms in DN.

Our findings highlight the significant involvement of NAD

metabolism-related genes in DN pathogenesis and underscore

their potential as biomarkers for disease classification and

therapeutic intervention. This study provides a foundation for

future research into DN mechanisms and underscores the

translational potential of targeting NAD metabolism in DN

treatment strategies.

Materials and methods

Data collection and preprocessing

The gene expression datasets GSE30528 and GSE30529 were

obtained from the Gene Expression Omnibus (GEO) database.

The raw expression matrix was extracted using the Affy package

(version 1.86.0). Gene annotations were mapped using the

GPL571 platform annotation file. For genes represented by

multiple probes, the expression value was calculated as the

average expression of the corresponding probes. Genes and

samples with more than 50% missing values were excluded

from further analysis to maintain data integrity. Finally, to

standardize gene expression levels across samples, median

normalization was applied.

Identification of NAD metabolism-
related genes

Differential expression analysis of NAD metabolism-related

genes between DN and normal samples was performed using the

limma package (version 3.52.2) in R software (version 4.2.1). The

analysis employed empirical Bayes statistics with moderated

t-tests to identify significantly differentially expressed genes.
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Statistical significance was determined using the adjusted

p-value < 0.05 (false discovery rate correction using the

Benjamini-Hochberg method). Genes meeting the threshold

were considered significantly differentially expressed and

included in subsequent analyses. A volcano plot was generated

to visualize the DEGs, and a heatmap was created using the

Complexheatmap package (version 2.13.1) to illustrate the

expression patterns of the identified NAD metabolism-related

genes. Box plots were constructed to further delineate the

expression levels, confirming statistically significant

differences. Correlation analysis among the NAD metabolism-

related genes was conducted using the ggplot2 package (version

3.4.4), and results were visualized in a correlation pie chart.

NAD score evaluation

The single-sample Gene Set Enrichment Analysis (ssGSEA)

algorithm from the GSVA package (version 1.44.5) was utilized to

calculate NAD scores for each sample. The NADmetabolism gene

sets were obtained fromMolecular Signatures Database, including

six pathways: GOBP_CELL_REDOX_HOMEOSTASIS, GOBP_

NADP_METABOLIC_PROCESS, GOMF_NAD_BINDING,

GOMF_NADP_BINDING, GOMF_NADPH_BINDING, and

GOBP_NADPH_REGENERATION. The expression profiles of

the genes within these sets were used to compute the enrichment

scores for each sample. Normalization was performed using the

z-score transformation to ensure comparability across samples.

Subtype classification

Based on the expression profiles of the 13 NAD metabolism-

related genes, samples were classified into two NAD-related

subtypes (subtype1 and subtype2) utilized the

ConsensusClusterPlus package. The consensus clustering was

performed with the following parameters: Pearson correlation

distance metric, partitioning around medoids (PAM) clustering

algorithm, maximum cluster number (k) tested from 2 to 10,

10 resampling iterations, and 80% subsampling ratio. The

optimal number of clusters was determined based on the

consensus matrix heatmap, consensus cumulative distribution

function (CDF), and delta area plot. Cluster stability was assessed

using silhouette analysis, and the clustering solution with the

highest average silhouette score and most stable consensus was

selected. Differential expression analysis between these subtypes

was performed, and a volcano plot was generated to visualize

the results.

Enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were

conducted using the clusterProfiler package (version 4.4.4).

The results were visualized using lollipop and bubble plots

to identify significant biological processes and pathways

associated with the DEGs.

FIGURE 1
Flowchart of the study.
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Immune cell infiltration analysis

The ssGSEA algorithm was again applied to assess immune

cell infiltration levels between the two NAD-related subtypes.

The MCPcounter package (version 1.2.0) was utilized to further

evaluate immune cell types, and correlation analyses were

performed to explore associations between NAD scores and

immune cell infiltration levels.

Machine learning for biomarker
identification

To identify key NAD metabolism-related biomarker genes,

three machine learning algorithms were employed: LASSO

regression, Random Forest (RF), and Support Vector

Machine-Recursive Feature Elimination (SVM-RFE). For

LASSO regression, the regularization parameter (lambda) was

optimized through 10-fold cross-validation using cv.glmnet

function, selecting the lambda value that minimized cross-

validation error (lambda.min). For Random Forest, we used

the randomForest package (version 4.7.1.1), setting the

number of trees (ntree) to 500 and the number of variables

tried at each split (mtry) to the square root of the total number of

features. Hyperparameter tuning was conducted using grid

search combined with 10-fold cross-validation to find the best

mtry value. For SVM-RFE, the e1071 package (version 1.7.13)

was used with a linear kernel. Feature selection was performed

recursively, and the optimal number of features was determined

through 10-fold cross-validation. The optimal features were

determined, and a Venn diagram was created to illustrate the

common genes identified across the algorithms.

Validation of biomarker genes

The expression of key NAD metabolism-related marker

genes was validated using three independent datasets

(GSE96804, GSE104954, and GSE142025). The relevant

information for those datasets is presented in

Supplementary Table S1.

Association with renal function

The relationship between NAD metabolism-related hub

genes and renal function in DN patients was evaluated using

the Nephroseq V5 tool.1 The glomerular filtration rate (GFR) was

used as a measure of renal function. Correlation analyses were

performed to assess the associations between the expression

levels of NAD metabolism-related hub genes and GFR. These

analyses were conducted to provide a comprehensive

understanding of the impact of gene expression on renal

function in DN patients.

Results

Analysis of differentially expressed NAD
metabolism-related genes in DN

NAD metabolism is essential for many cellular processes,

including energy production, DNA repair, and regulation of

cellular stress responses. Given its central role in maintaining

cellular homeostasis, dysregulation of NAD metabolism is

implicated in various diseases, including diabetic nephropathy

(DN). Therefore, identifying differentially expressed NAD

metabolism-related genes in DN could provide insights into

the molecular mechanisms underlying this disease. The

analysis of differential expression in the DN-associated

combined datasets (GSE30528 and GSE30529) identified

13 differentially expressed NAD metabolism-related genes,

visualized in the volcano plot (Figure 2A). Expression

profiling of these 13 genes was conducted and illustrated

through a heatmap, showcasing distinct expression patterns

between normal and DN samples (Figure 2B). The

corresponding box plot further delineates the expression levels

of these genes, with statistically significant differences observed

(**p < 0.01 and ***p < 0.001), reinforcing the differential

expression identified (Figure 2C). Correlation analysis of the

13 NAD metabolism-related genes was visualized using a

correlation pie chart (Figure 2D). This analysis underscored

significant correlations among the genes, suggesting intricate

co-regulatory mechanisms within the context of NAD

metabolism in DN. Moreover, the NAD metabolism-related

genes played a role in pathways related to fatty acid

metabolism (Supplementary Figure S1). Overall, these findings

highlight the critical role of NAD metabolism-related genes in

DN, laying the groundwork for future research into their

functional roles and potential as therapeutic targets.

NAD score evaluation and subtype
classification in DN

Using the ssGSEA algorithm, we assessed the NAD score

levels between the control group and the DN group. The NAD

score was significantly increased in the DN group compared to

the control group, as illustrated in Figure 3A (***p < 0.001).

Based on the expression profiles of the 13 differentially expressed

NAD-related genes, we classified the samples into two distinct

NAD-related subtypes: C1 and C2 (Figure 3B). Differential1 https://nephroseq.org/
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expression analysis between the C1 and C2 subtypes is presented

in Figure 3C. The volcano plot depicts a significant number of

genes being differentially expressed between the subtypes, with

1993 genes upregulated and 1281 genes downregulated in

subtype C2 compared to subtype C1. Enrichment analysis of

DEGs between C1 and C2 highlighted several key biological

processes and signaling pathways. The Gene Ontology (GO)

enrichment analysis (Figure 3D) revealed significant enrichment

in molecular functions such as peptidase regulator activity and

collagen binding, cellular components including extracellular

matrix and secretory granule lumen, and biological processes

such as humoral immune response, leukocyte mediated

immunity, regulation of endopeptidase activity and cell

adhesion. The KEGG pathway enrichment analysis

(Figure 3E) identified several pathways significantly associated

with the DEGs, including ECM-receptor interaction, focal

adhesion, and phagosome. Notably, pathways involved in

immune response and infection, such as systemic lupus

erythematosus and Staphylococcus aureus infection, were also

enriched, indicating potential roles in DN pathogenesis. The

results of the functional enrichment analysis are presented in

Supplementary Table S2. These results collectively highlight the

heterogeneity in NAD metabolism-related gene expression in

DN and underscore the relevance of specific pathways and

biological processes in the disease pathology, providing

valuable insights into potential therapeutic targets for DN.

Immune cell infiltration analysis in NAD-
related subtypes of DN

Using the ssGSEA algorithm, we assessed the NAD score

levels between the two NAD-related subtypes (Subtype 1 and

Subtype 2). The results, depicted in Figure 4A, show that Subtype

FIGURE 2
Analysis of differentially expressed NAD metabolism-related genes in DN. (A) Volcano plot showing 13 differentially expressed NAD
metabolism-related genes identified in the combined datasets (GSE30528 and GSE30529). Significantly upregulated genes are highlighted in red,
while downregulated genes are highlighted in blue. (B) Heatmap illustrating the expression levels of these 13 genes across normal and DN samples.
Red indicates higher expression, and blue indicates lower expression. (C) Box plots showing the expression distribution of the 13 NAD
metabolism-related genes in normal (blue) and DN (red) samples. Statistically significant differences are indicated by *p < 0.05, **p < 0.01, ***p <
0.001. (D) Correlation pie chart displaying the correlations among the 13 NAD metabolism-related genes. Positive correlations are shown in red,
negative correlations in blue, with the significance levels noted as *p < 0.05, **p < 0.01, ***p < 0.001.
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1 exhibited a significantly higher NAD score compared to

Subtype 2 (***p < 0.001). This indicates a differential NAD

metabolic state between the two subtypes. We then evaluated

the levels of immune cell infiltration between the two

subtypes using the ssGSEA algorithm. As shown in

Figure 4B, Subtype 1 had significantly higher infiltration

levels of various immune cells including macrophages,

T cells, TFH, and T helper cells. Complementing the

ssGSEA analysis, the MCPcounter algorithm was utilized

to further assess the immune cell infiltration between the two

subtypes (Figure 4C). Consistent with the ssGSEA results,

Subtype 1 showed significantly higher levels of fibroblasts

and T cells compared to Subtype 2. These findings reinforce

the notion of varied immune profiles between the NAD-

related subtypes. Correlation analysis between NAD scores

and immune cell infiltration levels revealed significant

associations (Figure 4D). Specifically, NAD scores

positively correlated with the infiltration levels of T helper

cells, fibroblasts, and macrophages. Conversely, negative

correlations were observed with NK CD56dim cells,

Th1 cells, eosinophils, and NK cells. These results

collectively demonstrate that NAD metabolic states are

closely linked with immune cell infiltration profiles,

offering valuable insights into the pathophysiological

mechanisms underlying DN and potential avenues for

targeted therapies.

FIGURE 3
Analysis of NAD score and NAD-related subtypes in DN. (A) Violin plot showing the NAD score levels in control (blue) and DN (red) groups,
assessed using the ssGSEA algorithm. (B) Heatmap depicting the clustering of samples into two NAD-related subtypes (C1 and C2) based on the
expression profiles of 13 differentially expressed NAD-related genes. (C) Volcano plot displaying the differential expression analysis between
subtypes C1 and C2. Significant upregulated genes in C2 compared to C1 are shown in red, and downregulated genes are shown in blue. (D)
Gene Ontology (GO) enrichment analysis of differentially expressed genes between C1 and C2 subtypes, showing significantly enriched molecular
functions (MF), cellular components (CC), and biological processes (BP). (E) KEGG pathway enrichment analysis illustrating the significant pathways
associated with differentially expressed genes between the two subtypes.
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Immune-related pathway analysis and
correlation with NAD score in NAD-
related subtypes of DN

The ssGSEA algorithm was employed to evaluate the levels of

immune-related pathways between the two NAD-related

subtypes (Subtype 1 and Subtype 2). As illustrated in

Figure 5A, Subtype 1 exhibited significantly higher activity in

several immune-related pathways compared to Subtype 2.

Notably, pathways such as BCR signaling pathway and

antigen processing and presentation were significantly

upregulated in Subtype 1 (**p < 0.01). Correlation analysis

between NAD scores and immune-related pathways revealed

significant associations, as shown in Figure 5B. The most

prominent positive correlation was observed between the

NAD score and the antigen processing and presentation

pathway (R = 0.503, ***p < 0.001). In contrast, negative

correlations were noted between the NAD score and pathways

such as the TGFβ family member, interferons, and cytokines

(ranging from R = −0.341 to R = −0.514, *p < 0.05, ***p < 0.001).

These observations indicate that higher NAD scores are

associated with increased involvement in antigen processing

and presentation, while decreasing activity in other immune-

modulatory pathways. These findings collectively suggest that

NAD metabolism variations affect immune pathway activities

differentially across the NAD-related subtypes in DN. This could

provide a foundation for understanding the mechanistic links

between NAD metabolism and immune responses, offering

potential therapeutic targets for managing diabetic kidney

disease through modulating NAD-associated immune pathways.

GSVA enrichment analysis and correlation
with NAD score in NAD-related subtypes

The GSVA enrichment analysis was conducted to evaluate

pathway-level differences between the two NAD-related subtypes

(Subtype 1 and Subtype 2). The heatmap in Figure 6A illustrates

significant variations in pathway activity across the subtypes.

Enriched pathways in Subtype 2 include KRAS signaling and

pancreas beta cells, while Subtype 1 shows enrichment in

pathways such as apoptosis, peroxisome, glycolysis, interferon

gamma response, fatty acid metabolism, etc. These pathways are

functionally relevant, as KRAS signaling is critical for cell

FIGURE 4
NAD score and immune cell infiltration analysis in NAD-related subtypes of DN. (A) Violin plot showing the NAD score levels in the two NAD-
related subtypes (Subtype 1 and Subtype 2). (B) Immune cell infiltration levels assessed by the ssGSEA algorithm between the two subtypes.
Significant differences in several immune cell types aremarked (*p < 0.05, **p < 0.01, ***p < 0.001). (C) Immune cell infiltration levels assessed by the
MCPcounter algorithm between the two subtypes. Significant differences in infiltration levels are indicated (*p < 0.05, **p < 0.01, ***p < 0.001).
(D) Correlation analysis between NAD scores and immune cell infiltration levels.
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proliferation and survival, while pancreatic beta cells are

essential for insulin secretion and glucose homeostasis.

The box plots in Figure 6B provide a more detailed

comparison of the GSVA scores between the subtypes.

Notably, pathways like KRAS signaling and pancreatic

beta-cells functionality are significantly more enriched in

Subtype 2 compared to Subtype 1. Conversely, Subtype

1 exhibits higher enrichment in pathways such as the

reactive oxygen species pathway, fatty acid metabolism,

p53 pathway, apoptosis, PI3K/AKT/mTOR signaling,

glycolysis, interferon alpha response, and interferon

gamma response. These pathways are integral to cellular

stress responses, energy metabolism, and immune

regulation, suggesting that Subtype 1 may be more

responsive to metabolic dysregulation and oxidative stress.

Correlation analysis between the NAD score and the

differentially enriched pathways is presented in Figure 6C.

Strong positive correlations were observed between the NAD

score and pathways such as PI3K/AKT/mTOR signaling,

estrogen response late, and MTORC1 signaling (R = 0.748,

R = 0.576, R = 0.557; ***p < 0.001). Negative correlations were

noted for pathways like pancreatic beta-cells and KRAS

signaling DN (R = −0.549, R = −0.488; ***p < 0.001). These

findings highlight the heterogeneity in pathway activities

between the two NAD-related subtypes and their association

with NAD metabolism. This underscores the importance of

specific signaling and metabolic pathways in the context of DN,

providing potential targets for therapeutic intervention.

Identification of key NAD metabolism-
related biomarker genes in DN using
machine learning algorithms

To identify key NAD metabolism-related biomarker

genes in DN patients, we utilized three machine learning

algorithms: LASSO, Random Forest (RF), and Support Vector

Machine-Recursive Feature Elimination (SVM-RFE). The

LASSO regression model was applied to select 7 critical

features, and the binomial deviance indicated an optimal λ
value (Figure 7A). Next, the RF algorithm was employed to

evaluate feature importance. As shown in Figure 7B, the mean

decrease in Gini index was calculated for each gene,

identifying 10 top-performing genes critical for

distinguishing between DN subtypes. Similarly, the SVM-

RFE approach was applied to determine the optimal number

of features by evaluating the cross-validation (CV) error rate

(Figure 7C) and the associated CV accuracy (Figure 7D). The

analysis suggested that a minimal error rate and maximal

accuracy were achieved with nine features, confirming the

robustness of these selected genes. Integrating the results

from all three machine learning methods, the Venn diagram

in Figure 7E illustrates the common genes identified by

LASSO, RF, and SVM-RFE. Six key NAD metabolism-

related genes (FMO3, ALDH1A3, FMO5, TKT, LBR, and

HPGD) were consistently selected across the three

algorithms, indicating their potential as reliable

biomarkers for DN.

FIGURE 5
Immune-related pathway analysis and its correlation with NAD score in NAD-related subtypes of DN. (A) Box plot showing the levels of
immune-related pathways in the two NAD-related subtypes (Subtype 1 and Subtype 2) assessed by the ssGSEA algorithm. Significant differences
between the subtypes in various pathways are indicated (*p < 0.05, **p < 0.01, ***p < 0.001). (B) Correlation analysis between NAD scores and the
levels of immune-related pathways.
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Validation of key NADmetabolism-related
marker genes in DN

To validate the expression of key NAD metabolism-related

marker genes in DN, we analyzed three independent DN-

associated datasets: GSE96804 (Figure 8A), GSE104954

(Figure 8B), and GSE142025 (Figure 8C). In all three datasets,

FMO3, ALDH1A3, FMO5, and HPGD exhibited consistent and

significant dysregulation in DN samples. Furthermore, analysis

of the GSE104954 and GSE142025 datasets revealed a marked

upregulation of TKT expression in DN samples, while LBR

expression was notably increased in GSE96804 and

FIGURE 6
GSVA enrichment analysis. (A) Heatmap displaying the GSVA enrichment scores for various pathways between Subtype 1 and Subtype 2. Red
indicates high enrichment, and blue indicates low enrichment. (B) Box plots showing the GSVA scores for significantly different pathways between
NAD-related subtypes. Subtype 1 is represented in red, and Subtype 2 is represented in blue. (C) Correlation analysis between NAD scores and
pathways differentially enriched in the NAD-related subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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GSE104954. These results suggest that FMO3, ALDH1A3,

FMO5, and HPGD are potential key marker genes in the

context of NAD metabolism associated with DN.

Evaluation of NAD metabolism-related
hub genes’ association with renal function
in DN patients

Using the Nephroseq V5 tool,1 we evaluated the

relationship between key NAD metabolism-related hub

genes and renal function in DN patients. The renal

function was assessed via the estimated glomerular

filtration rate (GFR) (Figure 9). The expression levels of

NAD metabolism-related hub genes show significant

correlations with renal function in DN patients.

Specifically, FMO3 (R = −0.44, p = 0.04), ALDH1A3

(R = −0.623, p = 0.002), TKT (R = −0.629, p = 0.002), and

LBR (R = −0.573, p = 0.005) are inversely correlated with GFR,

suggesting their increased expression is associated with

worsening renal function. In contrast, FMO5 (R = 0.699,

p < 0.001) and HPGD (R = 0.676, p < 0.001) are positively

correlated with GFR, indicating their increased expression is

linked with better renal function. These findings underscore

the potential roles of these genes in the regulation of renal

function in DN and their utility as biomarkers.

Discussion

DN is a significant complication of diabetes, leading to

increased morbidity and mortality among affected individuals.

Recent studies have highlighted the critical role of NAD

metabolism in various metabolic disorders, including DN. Our

study identified thirteen differentially expressed NAD

metabolism-related genes in DN, with a notable increase in

the NAD score among DN patients compared to controls. We

classified two distinct NAD-related subtypes, revealing

significant differences in gene expression, immune cell

infiltration, and pathway activities. Key biomarkers, including

FMO3, ALDH1A3, FMO5, TKT, LBR, and HPGD, were

identified, with varying correlations to renal function.

FIGURE 7
Machine learning algorithms. (A) LASSO regression analysis identifying significant genes based on the optimal λ value, as determined by
binomial deviance. (B) RF analysis showing themean decrease in Gini index for each gene, indicating their importance in distinguishing DN. (C) SVM-
RFE analysis identifying the optimal number of features based on the 10-fold cross-validation (CV) error rate. (D) SVM-RFE analysis depicting the 10-
fold CV accuracy for various numbers of features. (E) Venn diagram integrating results from LASSO, Random Forest, and SVM-RFE.
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Our findings align with previous research indicating that

NAD metabolism is integral to the pathogenesis of DN. For

instance, the altered NAD levels can influence oxidative stress

and inflammation, both of which are critical in DN progression

[19–21]. Additionally, NAD+ precursor administration mitigates

inflammatory responses in the context of renal injury, suggesting

a protective role of NAD metabolism in DN [22]. The

identification of specific NAD-related subtypes in our study

adds a new dimension to existing literature, suggesting that

personalized approaches based on NAD metabolism could

enhance therapeutic strategies. Moreover, research reinforces

our conclusions by demonstrating that NAD metabolism can

enhance mitochondrial function and decrease inflammation in

DN, thereby underscoring the potential for therapeutic strategies

that focus on NAD metabolism [20].

The identified biomarkers demonstrate distinct biological

roles in DN pathogenesis through multiple mechanisms.

FMO3 (Flavin-containing monooxygenase 3) plays a crucial

role in xenobiotic metabolism and has been implicated in

renal protection mechanisms. Beyond our finding that

FMO3 deficiency confers renal protection following ischemia-

reperfusion injury in murine models [23], recent studies

demonstrate that FMO3 modulates trimethylamine N-oxide

(TMAO) production, which is elevated in diabetic patients

and correlates with renal dysfunction [24]. ALDH1A3

(Aldehyde dehydrogenase 1A3) serves as a critical enzyme in

aldehyde detoxification and retinoic acid synthesis. Inhibition of

ALDH1A3, whether through genetic means or pharmacological

intervention, has been shown to reduce blood glucose levels and

enhance insulin secretion in diabetic mice [25]. FMO5 is crucial

in regulating diverse metabolic pathways and processes, notably

those associated with lipid homeostasis and the absorption and

metabolism of glucose [26]. It serves as a key regulator of body

weight, glucose disposal, and insulin sensitivity [27]. TKT

(Transketolase) is essential for the pentose phosphate pathway

and NADPH generation [28]. TKT deficiency leads to a

reduction in thioredoxin-interacting protein levels, which is a

recognized inhibitor of GLUT4. This occurs by diminishing

NADPH and glutathione levels, subsequently inducing

oxidative stress in brown adipose tissue [29]. LBR (Lamin B

receptor) is involved in nuclear envelope integrity and has

emerging roles in metabolic regulation [30]. HPGD (15-

hydroxyprostaglandin dehydrogenase) regulates prostaglandin

metabolism. Conditional deletion of Hpgd in mouse Treg cells

led to the buildup of functionally compromised Treg cells

specifically in visceral adipose tissue, which in turn triggered

local inflammation and systemic insulin resistance [31]. The

identified NAD metabolism-related genes provide valuable

insights into the pathogenesis of DN. Understanding these

genes’ roles may lead to novel therapeutic targets, particularly

in managing the distinct subtypes of DN. The differential

expression of these genes suggests that interventions could be

tailored to individual patients based on their NAD-related

profiles, potentially improving treatment outcomes. The

biomarkers identified in our study hold significant promise for

clinical applications. Their correlation with renal function

FIGURE 8
Validation of key NAD metabolism-related genes in DN. The
expression levels of six NAD metabolism-related genes (FMO3,
ALDH1A3, FMO5, TKT, LBR, HPGD) were analyzed in three
independent DN-associated datasets: GSE96804 (A),
GSE104954 (B), and GSE142025 (C). *p < 0.05, **p < 0.01,
***p < 0.001.
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suggests they could serve as indicators for disease progression

and treatment response. Incorporating these biomarkers into

clinical practice may facilitate early diagnosis and personalized

treatment plans for patients with DN.

Our findings provide mechanistic insights into how NAD

metabolism influences DN. We specifically identified several key

enriched pathways with distinct relevance to the pathogenesis of

DN. Among these, the reactive oxygen species (ROS) pathway

exhibited the higher enrichment in patients classified under

subtype 1. This is particularly significant because the

accumulation of ROS in diabetic kidneys contributes to

podocyte apoptosis, mesangial cell proliferation, and the

epithelial-mesenchymal transition of tubular cells [32, 33].

The enrichment of the fatty acid metabolism pathway in

subtype 1 highlights the metabolic reprogramming occurring

in diabetic kidneys, where increased lipid accumulation

contributes to renal lipotoxicity and progressive fibrosis [34].

The enrichment of the glycolysis pathway in subtype 1 indicates a

metabolic shift towards aerobic glycolysis in diabetic renal cells,

which promotes inflammatory responses and extracellular

matrix production [35]. The interferon alpha and gamma

response pathways demonstrated significant enrichment in

subtype 1, suggesting enhanced activation of the innate

immune system. This contributes to chronic inflammation

and progressive renal injury in DN [36]. Regarding immune

cell infiltration, our analysis revealed specific patterns of immune

dysregulation in DN subtypes. Subtype 1 demonstrated increased

infiltration of macrophages, creating a pro-inflammatory

microenvironment that perpetuates renal injury. This finding

aligns with previous studies showing that macrophage

accumulation in diabetic kidneys promotes inflammatory

cytokine production and fibrosis progression [37].

Additionally, we observed increased T cell infiltration in

subtype 1, which has been linked to direct cytotoxic effects on

renal tubular cells and the promotion of interstitial fibrosis [38].

These pathways are crucial in understanding how

dysregulation of NAD metabolism contributes to the

development and progression of DN. Previous studies have

shown that NAD+ depletion leads to increased oxidative

stress and inflammation, which exacerbates renal injury in

FIGURE 9
Correlation between hub gene expression and renal function in DN Patients. Scatter plots illustrating the correlation between the expression
levels of hub genes and renal function, represented by Log2 GFR (MDRD), in DN patients. The genes analyzed include FMO3 (A), ALDH1A3 (B),
FMO5 (C), TKT (D), LBR (E), and HPGD (F).
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diabetic models [39–41]. This suggests that therapeutic strategies

aimed at restoring NAD+ levels could potentially mitigate the

adverse effects associated with DN. Furthermore, the interplay

between NADmetabolism andmitochondrial function cannot be

overlooked, as mitochondria are central to both energy

production and apoptosis in renal cells [42, 43]. It is essential

to explore how enhancing NAD+ synthesis might improve

mitochondrial bioenergetics, thereby reducing oxidative

damage and promoting cell survival. Additionally, the

association of NAD with fatty acid metabolism highlights

another critical avenue for research. The dysregulation of lipid

metabolism in diabetes is well-documented, and it may be

beneficial to investigate how NAD+ supplementation could

recalibrate lipid profiles in renal tissues [44, 45]. By

addressing the metabolic inflexibility often seen in diabetic

patients, we might uncover novel preventive strategies against

DN. Moreover, the differential responses of DN subtypes to

interferon alpha and gamma indicate that immune modulation

could play a role in disease progression [46, 47]. Future studies

should focus on how NAD+ influences immune cell activation

and function in the renal microenvironment. By delineating these

mechanisms, we can potentially identify biomarkers for DN

progression and therapeutic targets that could enhance renal

resilience. Overall, the intricate relationship between NAD

metabolism and various biological pathways suggests a

multifaceted approach to understanding and treating DN. As

we deepen our investigation into these connections, we may pave

the way for innovative interventions that not only restore

metabolic balance but also improve patient outcomes in

diabetic kidney disease.

The strengths of our study include a comprehensive analysis

of multiple datasets and the application of robust machine

learning algorithms to identify key biomarkers. Despite these

strengths, certain limitations exist, such as the reliance on

existing datasets, which may not capture all aspects of NAD

metabolism in DN. In this study, we utilized two datasets,

GSE30528 and GSE30529, which include 19 DN samples and

25 control samples. While these datasets are relevant, they have

limitations in terms of sample size and potential heterogeneity.

The relatively small sample size may limit the statistical power

and generalizability of our findings. Additionally, potential biases

inherent in these datasets, such as differences in sample

collection, processing, and population demographics, could

affect the robustness of our results. Future studies should

strive for validation in larger, more diverse cohorts.

Future research should also focus on clarifying the precise

mechanisms by which NAD metabolism-related genes influence

DN. Longitudinal studies could provide insight into the

interactions of these genes with environmental and genetic

factors over time. Additionally, exploring therapeutic

interventions targeting NAD metabolism may yield promising

management strategies for DN. For instance, clinical trials

assessing the efficacy of NAD+ precursors in diabetic patients

could offer valuable data on their potential benefits in preventing

or treating DN.

In conclusion, our study underscores the significant role of

NAD metabolism-related genes in DN. The identification of

distinct subtypes and potential biomarkers paves the way for

future research and therapeutic interventions, ultimately

contributing to improved patient outcomes in DN

management. By advancing our understanding of NAD

metabolism, we can enhance the precision of diabetes care

and foster a healthier society.
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