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Abstract

Diabetic nephropathy (DN) remains a major complication of diabetes,
significantly impacting renal function. Emerging evidence suggests that NAD
metabolism plays a crucial role in DN pathogenesis. This study investigates the
roles of NAD metabolism-related genes in DN and how there are associated with
different disease subtypes. We analyzed gene expression data from DN-
associated datasets (GSE30528 and GSE30529) to identify differences in NAD
metabolism-related genes between normal and DN samples. We classified DN
into subtypes based on NAD gene expression and evaluated NAD scores using
ssGSEA. Immune cell infiltration and pathway analyses were assessed using
ssGSEA, Microenvironment Cell Populations-counter (MCPcounter), and Gene
Set Variation Analysis (GSVA). Key biomarker genes were identified using machine
learning algorithms and validated across multiple datasets. We further explored
the relationship between gene expression and kidney function using the
Nephroseq V5 tool. Thirteen differentially expressed NAD metabolism-related
genes were identified, with distinctive expression patterns observed between
normal and DN samples. Two distinct NAD-related subtypes were classified,
demonstrating significant differences in gene expression, immune cell infiltration,
and pathway activities. Immune-related pathways and cellular processes
exhibited varied enrichment between subtypes. Six key NAD metabolism-
related genes (FMO3, ALDH1A3, FMOS5, TKT, LBR, HPGD) were identified as
potential biomarkers. Higher levels of FMO3, ALDH1A3, TKT, and LBR were
linked to worse kidney function, while FMO5 and HPGD were associated with
better kidney function. The study highlights the significant involvement of NAD
metabolism-related genes in DN pathogenesis and their association with disease
subtypes and renal function. The identified biomarkers could be targets for new
treatments and provide insight for future DN research.
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Impact statement

Our findings highlight the significant involvement of NAD
metabolism-related genes in DN pathogenesis and underscore
their potential as biomarkers for disease classification and
therapeutic intervention. This study provides a foundation for
future research into DN mechanisms and underscores the
translational potential of targeting NAD metabolism in DN
treatment strategies.

Introduction

Diabetic nephropathy (DN) is acknowledged as a primary
contributor to end-stage renal disease (ESRD) and a serious
complication of diabetes mellitus, impacting millions globally
[1].

albuminuria, a diminishing glomerular filtration rate (GFR),

The progressive characteristics of DN, which include

and eventual renal failure, place a significant strain on
healthcare systems and highlight the urgent need for effective
diagnostic and treatment approaches [2, 3]. The development of
DN is influenced by multiple factors and involves a complex
interaction of hemodynamic and metabolic elements. Persistent
hyperglycemia triggers various pathogenic mechanisms, such as
the activation of the renin-angiotensin-aldosterone system
(RAAS), increased formation of advanced glycation end
products (AGEs), oxidative stress, inflammation, and fibrosis
[4-6]. These interconnected processes lead to glomerular
hypertrophy, thickening of the basement membrane, loss of
podocytes, and tubulointerstitial fibrosis, ultimately resulting
in progressive renal impairment and ESRD [7, 8].

Nicotinamide adenine dinucleotide (NAD) metabolism plays
a pivotal role in cellular bioenergetics, redox reactions, and
signaling pathways [9]. NAD serves as a coenzyme in redox
reactions, crucial for ATP production and cellular metabolism
[10]. It also functions as a substrate for enzymes involved in post-
translational modifications, such as sirtuins and poly (ADP-
ribose) polymerases (PARPs), which are essential for DNA
repair, gene expression regulation, and maintaining genomic
stability [11, 12]. In the context of chronic kidney disease and
DN, NAD metabolism has garnered attention due to its
involvement in inflammatory and oxidative stress responses,
mitochondrial dysfunction, and cellular senescence [13, 14].
Studies have demonstrated that NAD levels decline with age
and in various disease states, including CKD and DN,
contributing to exacerbated renal damage and impaired renal
function [15-17]. NAD+ supplementation has been shown to
ameliorate kidney injury in animal models, highlighting its
potential as a therapeutic target [18].

However, despite these findings, the specific roles of NAD
metabolism-related genes in DN pathogenesis and their potential
as biomarkers for disease subtypes and renal function remain
poorly understood. This study aims to fill this knowledge gap by
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investigating the expression and function of NAD metabolism-
related genes in DN. We will classify DN subtypes based on their
expression profiles and identify potential biomarkers that
correlate with renal function. Figure 1 presents the flow chart
of the study. Initially, NAD-related genes were extracted from the
Molecular Signatures Database and differentially expressed genes
(DEGs) were identified from datasets GSE30528 and GSE30529.
Combining these sources, 13 NAD metabolism-related genes
were determined. This set of genes underwent machine learning
analysis, resulting in the identification of 6 signature genes.
Concurrently, these 13 genes were used to classify samples
into NAD-related subtypes, followed by enrichment analysis,
immune correlation studies, and Gene Set Variation Analysis
(GSVA). Finally, the expression of six marker genes was validated
additional GSE96804, GSE104954,
GSE142025. The correlation between these marker genes and

using datasets and
glomerular filtration rate (GFR) was assessed via the Nephroseq
V5 their

mechanisms in DN.

tool, comprehensively elucidating underlying

Our findings highlight the significant involvement of NAD
metabolism-related genes in DN pathogenesis and underscore
their potential as biomarkers for disease classification and
therapeutic intervention. This study provides a foundation for
future research into DN mechanisms and underscores the
translational potential of targeting NAD metabolism in DN

treatment strategies.

Materials and methods
Data collection and preprocessing

The gene expression datasets GSE30528 and GSE30529 were
obtained from the Gene Expression Omnibus (GEO) database.
The raw expression matrix was extracted using the Affy package
(version 1.86.0). Gene annotations were mapped using the
GPL571 platform annotation file. For genes represented by
multiple probes, the expression value was calculated as the
average expression of the corresponding probes. Genes and
samples with more than 50% missing values were excluded
from further analysis to maintain data integrity. Finally, to
standardize gene expression levels across samples, median
normalization was applied.

Identification of NAD metabolism-
related genes

Differential expression analysis of NAD metabolism-related
genes between DN and normal samples was performed using the
limma package (version 3.52.2) in R software (version 4.2.1). The
analysis employed empirical Bayes statistics with moderated
t-tests to identify significantly differentially expressed genes.
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FIGURE 1

Flowchart of the study.

Statistical significance was determined using the adjusted
p-value < 0.05 (false discovery rate correction using the
Benjamini-Hochberg method). Genes meeting the threshold
were considered significantly differentially expressed and
included in subsequent analyses. A volcano plot was generated
to visualize the DEGs, and a heatmap was created using the
Complexheatmap package (version 2.13.1) to illustrate the
expression patterns of the identified NAD metabolism-related
genes. Box plots were constructed to further delineate the
expression levels, confirming statistically  significant
differences. Correlation analysis among the NAD metabolism-
related genes was conducted using the ggplot2 package (version

3.4.4), and results were visualized in a correlation pie chart.

NAD score evaluation

The single-sample Gene Set Enrichment Analysis (ssGSEA)
algorithm from the GSVA package (version 1.44.5) was utilized to
calculate NAD scores for each sample. The NAD metabolism gene
sets were obtained from Molecular Signatures Database, including
six pathways: GOBP_CELL_REDOX_HOMEOSTASIS, GOBP_
NADP_METABOLIC_PROCESS, GOMF_NAD_BINDING,
GOMF_NADP_BINDING, GOMF_NADPH_BINDING, and
GOBP_NADPH_REGENERATION. The expression profiles of
the genes within these sets were used to compute the enrichment
scores for each sample. Normalization was performed using the
z-score transformation to ensure comparability across samples.
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Subtype classification

Based on the expression profiles of the 13 NAD metabolism-
related genes, samples were classified into two NAD-related
subtypes  (subtypel the

ConsensusClusterPlus package. The consensus clustering was

and  subtype2)  utilized
performed with the following parameters: Pearson correlation
distance metric, partitioning around medoids (PAM) clustering
algorithm, maximum cluster number (k) tested from 2 to 10,
10 resampling iterations, and 80% subsampling ratio. The
optimal number of clusters was determined based on the
consensus matrix heatmap, consensus cumulative distribution
function (CDF), and delta area plot. Cluster stability was assessed
using silhouette analysis, and the clustering solution with the
highest average silhouette score and most stable consensus was
selected. Differential expression analysis between these subtypes
was performed, and a volcano plot was generated to visualize
the results.

Enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
(KEGG)
conducted using the clusterProfiler package (version 4.4.4).

Genomes pathway enrichment analyses were
The results were visualized using lollipop and bubble plots
to identify significant biological processes and pathways

associated with the DEGs.
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Immune cell infiltration analysis

The ssGSEA algorithm was again applied to assess immune
cell infiltration levels between the two NAD-related subtypes.
The MCPcounter package (version 1.2.0) was utilized to further
evaluate immune cell types, and correlation analyses were
performed to explore associations between NAD scores and
immune cell infiltration levels.

Machine learning for biomarker
identification

To identify key NAD metabolism-related biomarker genes,
three machine learning algorithms were employed: LASSO
regression, Random Forest (RF), and Support Vector
Machine-Recursive Feature Elimination (SVM-RFE). For
LASSO regression, the regularization parameter (lambda) was
optimized through 10-fold cross-validation using cv.glmnet
function, selecting the lambda value that minimized cross-
validation error (lambda.min). For Random Forest, we used
the randomForest package (version 4.7.1.1), setting the
number of trees (ntree) to 500 and the number of variables
tried at each split (mtry) to the square root of the total number of
features. Hyperparameter tuning was conducted using grid
search combined with 10-fold cross-validation to find the best
mtry value. For SVM-RFE, the e1071 package (version 1.7.13)
was used with a linear kernel. Feature selection was performed
recursively, and the optimal number of features was determined
through 10-fold cross-validation. The optimal features were
determined, and a Venn diagram was created to illustrate the
common genes identified across the algorithms.

Validation of biomarker genes

The expression of key NAD metabolism-related marker
genes was validated using three independent datasets
(GSE96804, GSE104954, and GSE142025). The relevant
information  for  those

datasets is  presented in

Supplementary Table S1.
Association with renal function

The relationship between NAD metabolism-related hub
genes and renal function in DN patients was evaluated using

the Nephroseq V5 tool.' The glomerular filtration rate (GFR) was
used as a measure of renal function. Correlation analyses were

1 https://nephroseq.org/
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performed to assess the associations between the expression
levels of NAD metabolism-related hub genes and GFR. These
analyses were conducted to provide a comprehensive
understanding of the impact of gene expression on renal
function in DN patients.

Results

Analysis of differentially expressed NAD
metabolism-related genes in DN

NAD metabolism is essential for many cellular processes,
including energy production, DNA repair, and regulation of
cellular stress responses. Given its central role in maintaining
cellular homeostasis, dysregulation of NAD metabolism is
implicated in various diseases, including diabetic nephropathy
(DN). Therefore, identifying differentially expressed NAD
metabolism-related genes in DN could provide insights into
the molecular mechanisms underlying this disease. The
analysis of differential expression in the DN-associated
combined datasets (GSE30528 and GSE30529) identified
13 differentially expressed NAD metabolism-related genes,
visualized in the volcano plot (Figure 2A). Expression
profiling of these 13 genes was conducted and illustrated
through a heatmap, showcasing distinct expression patterns
between normal and DN samples (Figure 2B). The
corresponding box plot further delineates the expression levels
of these genes, with statistically significant differences observed
(*p < 0.01 and **p < 0.001), reinforcing the differential
expression identified (Figure 2C). Correlation analysis of the
13 NAD metabolism-related genes was visualized using a
correlation pie chart (Figure 2D). This analysis underscored
significant correlations among the genes, suggesting intricate
co-regulatory mechanisms within the context of NAD
metabolism in DN. Moreover, the NAD metabolism-related
genes played a role in pathways related to fatty acid
metabolism (Supplementary Figure S1). Overall, these findings
highlight the critical role of NAD metabolism-related genes in
DN, laying the groundwork for future research into their
functional roles and potential as therapeutic targets.

NAD score evaluation and subtype
classification in DN

Using the ssGSEA algorithm, we assessed the NAD score
levels between the control group and the DN group. The NAD
score was significantly increased in the DN group compared to
the control group, as illustrated in Figure 3A (**p < 0.001).
Based on the expression profiles of the 13 differentially expressed
NAD-related genes, we classified the samples into two distinct
NAD-related subtypes: C1 and C2 (Figure 3B). Differential
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FIGURE 2

Analysis of differentially expressed NAD metabolism-related genes in DN. (A) Volcano plot showing 13 differentially expressed NAD
metabolism-related genes identified in the combined datasets (GSE30528 and GSE30529). Significantly upregulated genes are highlighted in red,
while downregulated genes are highlighted in blue. (B) Heatmap illustrating the expression levels of these 13 genes across normal and DN samples.
Red indicates higher expression, and blue indicates lower expression. (C) Box plots showing the expression distribution of the 13 NAD
metabolism-related genes in normal (blue) and DN (red) samples. Statistically significant differences are indicated by *p < 0.05, **p < 0.01, ***p <
0.001. (D) Correlation pie chart displaying the correlations among the 13 NAD metabolism-related genes. Positive correlations are shown in red,
negative correlations in blue, with the significance levels noted as *p < 0.05, **p < 0.01, ***p < 0.001.

expression analysis between the C1 and C2 subtypes is presented
in Figure 3C. The volcano plot depicts a significant number of
genes being differentially expressed between the subtypes, with
1993 genes upregulated and 1281 genes downregulated in
subtype C2 compared to subtype Cl. Enrichment analysis of
DEGs between C1 and C2 highlighted several key biological
processes and signaling pathways. The Gene Ontology (GO)
enrichment analysis (Figure 3D) revealed significant enrichment
in molecular functions such as peptidase regulator activity and
collagen binding, cellular components including extracellular
matrix and secretory granule lumen, and biological processes
such as humoral immune response, leukocyte mediated
immunity, regulation of endopeptidase activity and cell
The KEGG pathway
(Figure 3E) identified several pathways significantly associated
with the DEGs, including ECM-receptor interaction, focal

adhesion. enrichment  analysis

adhesion, and phagosome. Notably, pathways involved in
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immune response and infection, such as systemic lupus
erythematosus and Staphylococcus aureus infection, were also
enriched, indicating potential roles in DN pathogenesis. The
results of the functional enrichment analysis are presented in
Supplementary Table S2. These results collectively highlight the
heterogeneity in NAD metabolism-related gene expression in
DN and underscore the relevance of specific pathways and
biological processes in the disease pathology, providing
valuable insights into potential therapeutic targets for DN.

Immune cell infiltration analysis in NAD-
related subtypes of DN

Using the ssGSEA algorithm, we assessed the NAD score
levels between the two NAD-related subtypes (Subtype 1 and
Subtype 2). The results, depicted in Figure 4A, show that Subtype
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Analysis of NAD score and NAD-related subtypes in DN. (A) Violin plot showing the NAD score levels in control (blue) and DN (red) groups,
assessed using the ssGSEA algorithm. (B) Heatmap depicting the clustering of samples into two NAD-related subtypes (C1 and C2) based on the
expression profiles of 13 differentially expressed NAD-related genes. (C) Volcano plot displaying the differential expression analysis between
subtypes C1 and C2. Significant upregulated genes in C2 compared to C1 are shown in red, and downregulated genes are shown in blue. (D)
Gene Ontology (GO) enrichment analysis of differentially expressed genes between C1 and C2 subtypes, showing significantly enriched molecular
functions (MF), cellular components (CC), and biological processes (BP). (E) KEGG pathway enrichment analysis illustrating the significant pathways
associated with differentially expressed genes between the two subtypes.

1 exhibited a significantly higher NAD score compared to
Subtype 2 (***p < 0.001). This indicates a differential NAD
metabolic state between the two subtypes. We then evaluated
the levels of immune cell infiltration between the two
subtypes using the ssGSEA algorithm. As shown in
Figure 4B, Subtype 1 had significantly higher infiltration
levels of various immune cells including macrophages,
T cells, TFH, and T helper cells. Complementing the
ssGSEA analysis, the MCPcounter algorithm was utilized
to further assess the immune cell infiltration between the two
subtypes (Figure 4C). Consistent with the ssGSEA results,
Subtype 1 showed significantly higher levels of fibroblasts
and T cells compared to Subtype 2. These findings reinforce
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the notion of varied immune profiles between the NAD-
related subtypes. Correlation analysis between NAD scores
and immune cell infiltration levels revealed significant
4D). NAD
positively correlated with the infiltration levels of T helper

associations  (Figure Specifically, scores
cells, fibroblasts, and macrophages. Conversely, negative
correlations were observed with NK CD56dim cells,
Thl and NK cells.

collectively demonstrate that NAD metabolic states are

cells, eosinophils, These results
closely linked with immune cell infiltration profiles,
offering valuable insights into the pathophysiological
mechanisms underlying DN and potential avenues for

targeted therapies.
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FIGURE 4

NAD score and immune cell infiltration analysis in NAD-related subtypes of DN. (A) Violin plot showing the NAD score levels in the two NAD-
related subtypes (Subtype 1 and Subtype 2). (B) Immune cell infiltration levels assessed by the ssGSEA algorithm between the two subtypes.
Significant differences in several immune cell types are marked (*p < 0.05, **p < 0.01, ***p < 0.001). (C) Immune cellinfiltration levels assessed by the
MCPcounter algorithm between the two subtypes. Significant differences in infiltration levels are indicated (*p < 0.05, **p < 0.01, ***p < 0.001).

(D) Correlation analysis between NAD scores and immune cell infiltration levels.

Immune-related pathway analysis and
correlation with NAD score in NAD-
related subtypes of DN

The ssGSEA algorithm was employed to evaluate the levels of
immune-related pathways between the two NAD-related
subtypes (Subtype 1 and Subtype 2). As illustrated in
Figure 5A, Subtype 1 exhibited significantly higher activity in
several immune-related pathways compared to Subtype 2.
Notably, pathways such as BCR signaling pathway and
antigen processing and presentation were significantly
upregulated in Subtype 1 (**p < 0.01). Correlation analysis
between NAD scores and immune-related pathways revealed
significant associations, as shown in Figure 5B. The most
prominent positive correlation was observed between the
NAD score and the antigen processing and presentation
pathway (R = 0.503, ***p < 0.001). In contrast, negative
correlations were noted between the NAD score and pathways
such as the TGFP family member, interferons, and cytokines
(ranging from R = —0.341 to R = —0.514, *p < 0.05, ***p < 0.001).
These observations indicate that higher NAD scores are
associated with increased involvement in antigen processing
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and presentation, while decreasing activity in other immune-
modulatory pathways. These findings collectively suggest that
NAD metabolism variations affect immune pathway activities
differentially across the NAD-related subtypes in DN. This could
provide a foundation for understanding the mechanistic links
between NAD metabolism and immune responses, offering
potential therapeutic targets for managing diabetic kidney
disease through modulating NAD-associated immune pathways.

GSVA enrichment analysis and correlation
with NAD score in NAD-related subtypes

The GSVA enrichment analysis was conducted to evaluate
pathway-level differences between the two NAD-related subtypes
(Subtype 1 and Subtype 2). The heatmap in Figure 6A illustrates
significant variations in pathway activity across the subtypes.
Enriched pathways in Subtype 2 include KRAS signaling and
pancreas beta cells, while Subtype 1 shows enrichment in
pathways such as apoptosis, peroxisome, glycolysis, interferon
gamma response, fatty acid metabolism, etc. These pathways are
functionally relevant, as KRAS signaling is critical for cell

Published by Frontiers
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between the subtypes in various pathways are indicated (*p < 0.05, **p < 0.01, ***p < 0.001). (B) Correlation analysis between NAD scores and the

levels of immune-related pathways.

proliferation and survival, while pancreatic beta cells are
essential for insulin secretion and glucose homeostasis.
The box plots in Figure 6B provide a more detailed
comparison of the GSVA scores between the subtypes.
Notably, pathways like KRAS signaling and pancreatic
beta-cells functionality are significantly more enriched in
Subtype 2 compared to Subtype 1. Conversely, Subtype
1 exhibits higher enrichment in pathways such as the
reactive oxygen species pathway, fatty acid metabolism,
PI3K/AKT/mTOR
and

p53 pathway, apoptosis, signaling,

glycolysis, interferon alpha response, interferon
gamma response. These pathways are integral to cellular
stress and immune

responses, energy metabolism,

regulation, suggesting that Subtype 1 may be more
responsive to metabolic dysregulation and oxidative stress.
Correlation analysis between the NAD score and the
differentially enriched pathways is presented in Figure 6C.
Strong positive correlations were observed between the NAD
score and pathways such as PI3K/AKT/mTOR signaling,
estrogen response late, and MTORCI signaling (R = 0.748,
R =0.576, R = 0.557; ***p < 0.001). Negative correlations were
noted for pathways like pancreatic beta-cells and KRAS
signaling DN (R = -0.549, R = —0.488; ***p < 0.001). These
findings highlight the heterogeneity in pathway activities
between the two NAD-related subtypes and their association
with NAD metabolism. This underscores the importance of
specific signaling and metabolic pathways in the context of DN,
providing potential targets for therapeutic intervention.
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Identification of key NAD metabolism-
related biomarker genes in DN using
machine learning algorithms

To identify key NAD metabolism-related biomarker
genes in DN patients, we utilized three machine learning
algorithms: LASSO, Random Forest (RF), and Support Vector
Machine-Recursive Feature Elimination (SVM-RFE). The
LASSO regression model was applied to select 7 critical
features, and the binomial deviance indicated an optimal A
value (Figure 7A). Next, the RF algorithm was employed to
evaluate feature importance. As shown in Figure 7B, the mean
decrease in Gini index was calculated for each gene,
10
distinguishing between DN subtypes. Similarly, the SVM-

identifying top-performing  genes  critical for
RFE approach was applied to determine the optimal number
of features by evaluating the cross-validation (CV) error rate
(Figure 7C) and the associated CV accuracy (Figure 7D). The
analysis suggested that a minimal error rate and maximal
accuracy were achieved with nine features, confirming the
robustness of these selected genes. Integrating the results
from all three machine learning methods, the Venn diagram
in Figure 7E illustrates the common genes identified by
LASSO, RF, and SVM-RFE. Six key NAD metabolism-
related genes (FMO3, ALDH1A3, FMOS5, TKT, LBR, and
HPGD) the three

algorithms, reliable

were consistently selected across

indicating  their potential as

biomarkers for DN.
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GSVA enrichment analysis. (A) Heatmap displaying the GSVA enrichment scores for various pathways between Subtype 1 and Subtype 2. Red
indicates high enrichment, and blue indicates low enrichment. (B) Box plots showing the GSVA scores for significantly different pathways between
NAD-related subtypes. Subtype 1 is represented in red, and Subtype 2 is represented in blue. (C) Correlation analysis between NAD scores and
pathways differentially enriched in the NAD-related subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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Validation of key NAD metabolism-related
marker genes in DN

To validate the expression of key NAD metabolism-related
marker genes in DN, we analyzed three independent DN-

associated datasets: GSE96804 (Figure 8A), GSE104954

Experimental Biology and Medicine

(Figure 8B), and GSE142025 (Figure 8C). In all three datasets,
FMO3, ALDH1A3, FMOS5, and HPGD exhibited consistent and
significant dysregulation in DN samples. Furthermore, analysis
of the GSE104954 and GSE142025 datasets revealed a marked
upregulation of TKT expression in DN samples, while LBR
increased in GSE96804 and

expression was notably
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GSE104954. These results suggest that FMO3, ALDHI1A3,
FMO5, and HPGD are potential key marker genes in the
context of NAD metabolism associated with DN.

Evaluation of NAD metabolism-related
hub genes’ association with renal function
in DN patients

Using the Nephroseq V5 tool,” we evaluated the
relationship between key NAD metabolism-related hub
genes and renal function in DN patients. The renal
the
filtration rate (GFR) (Figure 9). The expression levels of

function was assessed via estimated glomerular

NAD metabolism-related hub genes show
correlations with renal function in DN patients.
Specifically, FMO3 (R = -0.44, p = 0.04), ALDHI1A3
(R = —0.623, p = 0.002), TKT (R = —0.629, p = 0.002), and
LBR (R=-0.573, p=0.005) are inversely correlated with GFR,
suggesting their increased expression is associated with

significant

worsening renal function. In contrast, FMO5 (R = 0.699,
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p < 0.001) and HPGD (R = 0.676, p < 0.001) are positively
correlated with GFR, indicating their increased expression is
linked with better renal function. These findings underscore
the potential roles of these genes in the regulation of renal
function in DN and their utility as biomarkers.

Discussion

DN is a significant complication of diabetes, leading to
increased morbidity and mortality among affected individuals.
Recent studies have highlighted the critical role of NAD
metabolism in various metabolic disorders, including DN. Our
identified thirteen differentially expressed NAD
metabolism-related genes in DN, with a notable increase in

study

the NAD score among DN patients compared to controls. We
classified NAD-related  subtypes,
significant differences in gene expression, immune cell

two  distinct revealing

infiltration, and pathway activities. Key biomarkers, including
FMO3, ALDHI1A3, FMO5, TKT, LBR, and HPGD, were
identified, with varying correlations to renal function.
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Validation of key NAD metabolism-related genes in DN. The
expression levels of six NAD metabolism-related genes (FMO3,
ALDH1A3, FMOS5, TKT, LBR, HPGD) were analyzed in three
independent DN-associated datasets: GSE96804 (A),
GSE104954 (B), and GSE142025 (C). *p < 0.05, **p < 0.01,
***p < 0.001.

Our findings align with previous research indicating that
NAD metabolism is integral to the pathogenesis of DN. For
instance, the altered NAD levels can influence oxidative stress
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and inflammation, both of which are critical in DN progression
[19-21]. Additionally, NAD+ precursor administration mitigates
inflammatory responses in the context of renal injury, suggesting
The
identification of specific NAD-related subtypes in our study

a protective role of NAD metabolism in DN [22].

adds a new dimension to existing literature, suggesting that
personalized approaches based on NAD metabolism could
enhance therapeutic strategies. Moreover, research reinforces
our conclusions by demonstrating that NAD metabolism can
enhance mitochondrial function and decrease inflammation in
DN, thereby underscoring the potential for therapeutic strategies
that focus on NAD metabolism [20].

The identified biomarkers demonstrate distinct biological
roles in DN pathogenesis through multiple mechanisms.
FMO3 (Flavin-containing monooxygenase 3) plays a crucial
role in xenobiotic metabolism and has been implicated in
renal protection mechanisms. Beyond our finding that
FMO3 deficiency confers renal protection following ischemia-
reperfusion injury in murine models [23], recent studies
demonstrate that FMO3 modulates trimethylamine N-oxide
(TMAO) production, which is elevated in diabetic patients
with [24]. ALDHIA3
(Aldehyde dehydrogenase 1A3) serves as a critical enzyme in

and correlates renal dysfunction
aldehyde detoxification and retinoic acid synthesis. Inhibition of
ALDH1A3, whether through genetic means or pharmacological
intervention, has been shown to reduce blood glucose levels and
enhance insulin secretion in diabetic mice [25]. FMO5 is crucial
in regulating diverse metabolic pathways and processes, notably
those associated with lipid homeostasis and the absorption and
metabolism of glucose [26]. It serves as a key regulator of body
weight, glucose disposal, and insulin sensitivity [27]. TKT
(Transketolase) is essential for the pentose phosphate pathway
and NADPH generation [28]. TKT deficiency leads to a
reduction in thioredoxin-interacting protein levels, which is a
recognized inhibitor of GLUT4. This occurs by diminishing
NADPH
oxidative stress in brown adipose tissue [29]. LBR (Lamin B

and glutathione levels, subsequently inducing
receptor) is involved in nuclear envelope integrity and has
emerging roles in metabolic regulation [30]. HPGD (15-
hydroxyprostaglandin dehydrogenase) regulates prostaglandin
metabolism. Conditional deletion of Hpgd in mouse Treg cells
led to the buildup of functionally compromised Treg cells
specifically in visceral adipose tissue, which in turn triggered
local inflammation and systemic insulin resistance [31]. The
identified NAD metabolism-related genes provide valuable
insights into the pathogenesis of DN. Understanding these
genes’ roles may lead to novel therapeutic targets, particularly
in managing the distinct subtypes of DN. The differential
expression of these genes suggests that interventions could be
tailored to individual patients based on their NAD-related
profiles, potentially improving treatment outcomes. The
biomarkers identified in our study hold significant promise for
clinical applications. Their correlation with renal function
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Correlation between hub gene expression and renal function in DN Patients. Scatter plots illustrating the correlation between the expression
levels of hub genes and renal function, represented by Log2 GFR (MDRD), in DN patients. The genes analyzed include FMO3 (A), ALDH1A3 (B),

FMOS (C), TKT (D), LBR (E), and HPGD (F).

suggests they could serve as indicators for disease progression
and treatment response. Incorporating these biomarkers into
clinical practice may facilitate early diagnosis and personalized
treatment plans for patients with DN.

Our findings provide mechanistic insights into how NAD
metabolism influences DN. We specifically identified several key
enriched pathways with distinct relevance to the pathogenesis of
DN. Among these, the reactive oxygen species (ROS) pathway
exhibited the higher enrichment in patients classified under
subtype 1. This
accumulation of ROS in diabetic kidneys contributes to

is particularly significant because the

podocyte apoptosis, mesangial cell proliferation, and the
epithelial-mesenchymal transition of tubular cells [32, 33].
The enrichment of the fatty acid metabolism pathway in
subtype 1 highlights the metabolic reprogramming occurring
in diabetic kidneys, where increased lipid accumulation
contributes to renal lipotoxicity and progressive fibrosis [34].
The enrichment of the glycolysis pathway in subtype 1 indicates a
metabolic shift towards aerobic glycolysis in diabetic renal cells,
which promotes inflammatory responses and extracellular
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matrix production [35]. The interferon alpha and gamma
response pathways demonstrated significant enrichment in
subtype 1, suggesting enhanced activation of the innate
immune system. This contributes to chronic inflammation
and progressive renal injury in DN [36]. Regarding immune
cell infiltration, our analysis revealed specific patterns of immune
dysregulation in DN subtypes. Subtype 1 demonstrated increased
infiltration of macrophages, creating a pro-inflammatory
microenvironment that perpetuates renal injury. This finding
aligns with previous studies showing that macrophage
accumulation in diabetic kidneys promotes inflammatory
cytokine progression  [37].
Additionally, we observed increased T cell infiltration in

production and fibrosis
subtype 1, which has been linked to direct cytotoxic effects on
renal tubular cells and the promotion of interstitial fibrosis [38].

These
dysregulation of NAD metabolism

pathways are crucial in understanding how

the
development and progression of DN. Previous studies have

contributes  to

shown that NAD+ depletion leads to increased oxidative
stress and inflammation, which exacerbates renal injury in
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diabetic models [39-41]. This suggests that therapeutic strategies
aimed at restoring NAD+ levels could potentially mitigate the
adverse effects associated with DN. Furthermore, the interplay
between NAD metabolism and mitochondrial function cannot be
overlooked, as mitochondria are central to both energy
production and apoptosis in renal cells [42, 43]. It is essential
to explore how enhancing NAD+ synthesis might improve
mitochondrial bioenergetics, thereby reducing oxidative

Additionally, the

association of NAD with fatty acid metabolism highlights

damage and promoting cell survival.
another critical avenue for research. The dysregulation of lipid
metabolism in diabetes is well-documented, and it may be
beneficial to investigate how NAD+ supplementation could
[44, 45]. By
addressing the metabolic inflexibility often seen in diabetic

recalibrate lipid profiles in renal tissues
patients, we might uncover novel preventive strategies against
DN. Moreover, the differential responses of DN subtypes to
interferon alpha and gamma indicate that immune modulation
could play a role in disease progression [46, 47]. Future studies
should focus on how NAD+ influences immune cell activation
and function in the renal microenvironment. By delineating these
mechanisms, we can potentially identify biomarkers for DN
progression and therapeutic targets that could enhance renal
resilience. Overall, the intricate relationship between NAD
metabolism and various biological pathways suggests a
multifaceted approach to understanding and treating DN. As
we deepen our investigation into these connections, we may pave
the way for innovative interventions that not only restore
metabolic balance but also improve patient outcomes in
diabetic kidney disease.

The strengths of our study include a comprehensive analysis
of multiple datasets and the application of robust machine
learning algorithms to identify key biomarkers. Despite these
strengths, certain limitations exist, such as the reliance on
existing datasets, which may not capture all aspects of NAD
metabolism in DN. In this study, we utilized two datasets,
GSE30528 and GSE30529, which include 19 DN samples and
25 control samples. While these datasets are relevant, they have
limitations in terms of sample size and potential heterogeneity.
The relatively small sample size may limit the statistical power
and generalizability of our findings. Additionally, potential biases
inherent in these datasets, such as differences in sample
collection, processing, and population demographics, could
affect the robustness of our results. Future studies should
strive for validation in larger, more diverse cohorts.

Future research should also focus on clarifying the precise
mechanisms by which NAD metabolism-related genes influence
DN. Longitudinal studies could provide insight into the
interactions of these genes with environmental and genetic
Additionally,
interventions targeting NAD metabolism may yield promising

factors over time. exploring  therapeutic

management strategies for DN. For instance, clinical trials
assessing the efficacy of NAD+ precursors in diabetic patients
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could offer valuable data on their potential benefits in preventing
or treating DN.

In conclusion, our study underscores the significant role of
NAD metabolism-related genes in DN. The identification of
distinct subtypes and potential biomarkers paves the way for
future research and therapeutic interventions, ultimately
DN
management. By advancing our understanding of NAD

contributing to improved patient outcomes in
metabolism, we can enhance the precision of diabetes care

and foster a healthier society.
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