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Abstract

Emerging clinical evidence underscores a bidirectional epidemiological
linkage between sepsis and type 2 diabetes mellitus (T2DM). This study
mechanistically investigates the underlying pathogenesis of this
comorbidity, specifically focusing on the role of ferroptosis-related genes
in its pathogenesis. A total of 1204 shared genes between sepsis and T2DM
were screened using datasets from sepsis (GSE65682) and T2DM
(GSE76894). GO and KEGG enrichment analyses, combined with WGCNA,
were performed to identify key pathways and hub genes. Three signaling
pathways—MAPK, adherens junction, and peroxisome—were significantly
associated with the sepsis-T2DM interaction. Subsequent Pearson
correlation analysis implicated ferroptosis as a critically involved process.
Five core ferroptosis-related genes, including CDC25B, DPP7, FBXO31,
PTCD3, and CNPY2, were were identified and experimentally validated
using gRT-PCR. Furthermore, based on cMAP, we screened eight
candidate drugs targeting these genes. Echinacea and Ibudilast were
predicted to possess the greatest preclinical potential among them. This
study provides a deeper insight into the shared pathogenesis of sepsis and
T2DM, highlighting the pivotal role of ferroptosis in the development and
progression of this comorbidity. Our findings offer preliminary insights into
the sepsis-T2DM comorbidity, highlighting ferroptosis as a potential key
pathological mechanism and identifying candidate targets for future
therapeutic exploration.
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Impact statement

Advances in  modern  sequencing technologies,
bioinformatics analysis have enabled researchers to explore
the interrelationships between diseases and the direct links in
their pathogenesis using human samples, rather than relying
solely on animal or cellular models. This approach allows for the
generation of more robust and convincing conclusions. In
this study, we employed bioinformatics analysis combined
with qRT-PCR validation to identify key genes and signaling
pathways involved in sepsis and T2DM. Our findings provide
new insights into the molecular mechanisms underlying
ferroptosis in sepsis with T2DM and suggest potential
further This

integrative approach holds promise for improving our

therapeutic interventions for exploration.
understanding of this complex disease intersection and

informing the development of targeted therapies.

Introduction

Sepsis is a life-threatening condition characterized by a
dysregulated host response to infection, leading to organ
dysfunction. It remains a major global health challenge, with
mortality rates exceeding 10% worldwide [1]. In 2017, sepsis
incidence reached 50 million new cases, resulting in 11 million
deaths and an alarming mortality rate of 22% [2]. Septic shock
accounts for 8-10% of intensive care unit (ICU) fatalities, with
persistently high associated mortality [3]. A recent systematic
review reported a mortality rate of 27% among sepsis patients,
underscoring the urgent need for improved therapeutic strategies
[4]. The World Health Organization has identified sepsis and
septic shock as critical public health priorities, emphasizing the
necessity of enhanced prevention, diagnosis, and treatment
strategies [5]. Early identification and intervention of “high-
risk” sepsis patients are recognized as critical for improving
clinical demand for novel

outcomes, underscoring the

approaches to reliably stratify patient risk and guide
personalized treatment.

The global prevalence of diabetes, particularly T2DM, has
been steadily increasing. According to the International Diabetes
Federation (IDF), the number of people living with diabetes
reached 536 million in 2021 and is projected to rise to 783 million
by 2045, with approximately 80% of diabetic patients residing in
middle- and low-income countries. The growth rate of diabetes is
notably higher in these regions compared to high-income
countries [6]. T2DM and its complications remain a leading
cause of hospitalization, disability, and mortality [7, 8].
Hyperglycemia significantly increases the risk of infection,
with diabetic patients exhibiting a 2-6-fold higher likelihood
of developing sepsis-related complications compared to non-
diabetic individuals [9-14]. Furthermore, diabetic patients
increased and

demonstrate sepsis-associated morbidity
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mortality, potentially due to impaired immune responses and
delayed resolution of inflammation. Additionally, diabetic
patients show higher rates of colonization by drug-resistant
pathogens, including methicillin-resistant  Staphylococcus
aureus (MRSA), compared to non-diabetic patients [15].
These observations underscore the critical role of diabetes as a
significant comorbidity in sepsis pathophysiology.

Ferroptosis, an iron-dependent form of regulated cell death
driven by lipid peroxide accumulation, has emerged as a key
mechanism in disease progression. Excessive reactive oxygen
(ROS)

microenvironment, driving pathological changes through lipid

species generation creates a  pro-inflammatory
peroxidation and subsequent damage to biomolecules and
cellular membranes [16]. This process triggers multiple forms
of regulated cell death including ferroptosis [17, 18].In the report
by Meng et al, it was demonstrated that the upregulation of
HMOXI1 is the cause of increased ferroptosis during the
of diabetic [19].

evidence indicates that ferroptosis occurs mainly under

development atherosclerosis Growing
conditions such as metabolic disorders and oxidative stress
and that ferroptosis in immune or other cell types can
modulate the immune response, thereby contributing to the
pathogenesis of both sepsis and T2DM [20].The present study
was initially inspired by two considerations: firstly, while the
established literature acknowledges the role of ferroptosis in
sepsis and the epidemiological association between T2DM and
severe infection [21], we noted a distinct lack of direct evidence
focusing on ferroptosis-related genes in the specific comorbid
context of human sepsis and T2DM. Secondly, our clinical
with  this
comorbidity [22]. It was this identified gap that prompted our

observations were  consistent documented
study to explore potential underlying mechanisms. Our findings
provide preliminary evidence suggesting ferroptosis as a
plausible pathway, and based on our current knowledge, we

believe this may be an early contribution to this particular area

of inquiry.
Advances in modern sequencing technology and
bioinformatics have enabled researchers to explore the

interrelationships among diseases and the direct links in their
pathogenesis using human samples, rather than relying solely
on animal or cellular models [23]. This approach allows for
the generation of more robust and convincing conclusions. In
this study, we employed bioinformatics analysis combined
with qQRT-PCR validation to identify key genes and signaling
pathways involved in sepsis and T2DM. Based on these
findings, we hypothesized that ferroptosis-related genes
(FRGs) may serve as shared genetic mediators contributing
to the worse outcomes of sepsis in patients with T2DM.
Using integrated bioinformatics analysis of public sepsis
and T2DM GEO datasets, we aimed to identify and validate
candidate FRGs, explore their immune microenvironment
associations, and assess their diagnostic value in sepsis
complicating T2DM.

Published by Frontiers
Society for Experimental Biology and Medicine


https://doi.org/10.3389/ebm.2025.10612

Xiao et al.

Materials and methods
Data download

The Series Matrix File data file of GSE76894 was downloaded
from NCBI GEO public data', annotated as GPL570, and the
expression profile data of 103 patients were included, of which
and 19 cases in the disease
group. Download the Series Matrix File data file of
GSE65682 from NCBI GEO public database, the annotated
file is GPL13667, a total of 802 patients were included in the
expression profile data, of which 42 cases were in the control

control group 84 cases

group and 760 cases were in the disease group (Supplementary
Table S1). All datasets were preprocessed to ensure data quality
and  consistency, correction,

including  background

normalization, and batch effect removal.

Differential expression and functional
enrichment analysis

Differential expression analysis was conducted using the R
package “Limma”. This method identified genes showing
significant differential expression between disease samples and
control groups. A significance threshold of p < 0.05 was applied.
The log2 fold change cutoff was set at [log2FC| > 0 following
iterative adjustments to retain a robust gene set for downstream
analyses. DEGs were visualized using volcano plots and
heatmaps. Functional annotations for the identified genes
were explored with the R package “ClusterProfiler.” Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes
analyses assessed associated biological themes and pathways.
Terms and pathways with both p-values and corrected
g-values below 0.05 were deemed statistically significant.

WGCNA analysis

A weighted gene co-expression network was constructed
using the WGCNA-R package. This approach identifies gene
modules with highly correlated expression patterns. The analysis
transformed a weighted adjacency matrix into a topological
overlap matrix (TOM) to assess network connectivity.
Hierarchical clustering was then applied to the TOM matrix,
generating a clustering tree structure. Distinct branches of this
tree correspond to different gene modules, with each module
represented by a unique color. Genes were assigned to modules
based on their expression pattern similarities, effectively

grouping the entire gene set into multiple co-expression modules.

1 https://www.ncbi.nlm.nih.gov/geo/info/datasets.html
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Immune cell infiltration analysis

The single-sample gene set enrichment analysis (ssGSEA) was
employed to evaluate immune cell composition within the
microenvironment. This method quantifies 29 distinct human
immune cell phenotypes, encompassing T cells, B cells, and
natural killer cells. The analysis utilized a validated custom gene
set (immune.gmt), widely applied in tumor immunology. This gene
set integrates core immune cell signatures from Bindea et al [24].
With critical functional features, including immune checkpoints and
cytolytic activity, from Danaher et al [25]. The ssGSEA algorithm
estimated relative abundances of 29 immune cell types from the gene
expression profiles. Spearman correlation analysis was subsequently
performed to assess relationships between gene expression and
immune cell infiltration levels. For data preprocessing, probe
expression values corresponding to duplicate gene symbols were
averaged to ensure gene symbol uniqueness. Genes showing zero
average expression across all samples were excluded from the
analysis, retaining only those with detectable expression signals.

Transcriptional regulation analysis of
key genes

Transcription factor prediction was conducted using the R
package “RcisTarget.” All analyses in this package are grounded
in motif-based assessments. The normalized enrichment score
(NES) for each motif is calculated relative to the complete motif
database. Additional annotation files were generated by
leveraging motif similarity and corresponding gene sequences.
The analytical process first involved calculating the area under
the curve for each motif and gene set pair. This calculation
derived from recovery curves generated through gene-set-to-
motif sequencing. Subsequently, the NES for individual motifs
was determined by comparing their area under the curve (AUC)
values against the distribution of all motifs within the gene set.

MiRNA network construction

MicroRNAs (miRNAs) are short non-coding RNAs that mediate
post-transcriptional regulation via mRNA degradation or translational
repression. This study investigated potential miRNA regulation of
candidate genes. Experimentally validated miRNAs targeting the key
identified through the miRcode database. A

miRNA-mRNA  interaction  network  was
subsequently constructed and visualized using Cytoscape software.

genes  were

comprehensive

Cmap drug prediction

The Connectivity Map (CMap) resource, developed by the
Broad Institute [26], provides a gene expression profiling
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database that cellular chemical

perturbations.

captures responses  to
This the
functional relationships between small molecules, genes, and

platform enables discovery of
disease states. The database comprises microarray data
documenting expression changes induced by 1309 small
molecule compounds across five human cell lines [27].
vary
different concentrations and exposure durations. This study

Treatment conditions substantially, incorporating

utilized disease-specific ~differentially expressed genes to

predict  potential from the

CMap database.

therapeutic ~ compounds

Collection of patients and healthy controls

The study enrolled fifteen participants comprising five
sepsis patients with T2DM comorbidity, five sepsis patients
without diabetes, and five healthy controls. All patient
recruitment was conducted through the Department of
the First Affiliated
Hospital of Bengbu Medical University (Supplementary
Table S2). T2DM diagnosis followed the American Diabetes
Association 2021 criteria [28], requiring meeting at least one
of these
glucose

Emergency Internal Medicine at

laboratory  parameters: random
2111 2-h OGTT
glucose >11.1 mmol/L, fasting plasma glucose >7.0 mmol/
L, or glycated hemoglobin A1C > 6.5%. The study protocol
received approval from the Human Ethics Committee of the
First Affiliated Hospital of Bengbu Medical University. All
procedures conformed to the ethical principles outlined in the

plasma

mmol/L, plasma

Helsinki Declaration.

Total RNA extraction and qRT-PCR

Morning fasting peripheral blood samples (5 mL) were
collected in ethylene diamine tetraacetic acid (EDTA)
containing tubes from all participants. Plasma separation
was achieved through centrifugation. Peripheral blood
mononuclear cells (PBMCs) were subsequently isolated via
Ficoll gradient centrifugation. Total RNA extraction utilized
RNAiso Plus reagent (Takara, Japan). Reverse transcription
was performed with the 5 x PrimeScript RT Master Mix
(Takara, Japan). PCR amplification employed the TB Green
PCR Core Kit (Takara, Japan) on a CFX96TM real-time
system (Bio-Rad, United States). The housekeeping gene
Beta-actin  served as an internal reference for
normalization. Relative mRNA expression levels were
determined using the 2° (~AACT) method. All primer
sequences appear in Supplementary Table S3. Statistical
of qRT-PCR  data ANOVA

implementation in GraphPad Prism (v6.0). A threshold of

analysis involved

p < 0.05 defined statistical significance.
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Statistical analysis

All statistical analyses were performed using R language
(version 4.2.2). All statistical tests were two-sided and p <
0.05 was statistically significant.

Results

Identification of differential expression
genes and functional enrichment analysis

The overall workflow of this study is summarized in the
Figure 1. Gene expression profiles were obtained from two
publicly available datasets: GSE76894 (NCBI ~GEO)
comprising 103 individuals (84 healthy controls and
19 T2DM patients), and GSE65682 (NCBI GEO) containing
data from 802 sepsis patients (42 healthy controls and 760 disease
cases). Differential gene expression analysis was performed using
the Limma R package, with a significance threshold set at P <
0.05, |log2 FC| > 0. This analysis identified 4,945 DEGs in the
T2DM dataset (2460 were upregulated, and 2485 were
downregulated) and 9061 DEGs in the sepsis dataset
(4983 upregulated and 4078 downregulated) (Figure 2A).
identified 1,204 shared DEGs
(707 upregulated and 497 downregulated), highlighting genes

Intersection  analysis
commonly dysregulated in both conditions (Figure 2B).
Functional annotation of these intersecting genes was
conducted via GO and KEGG enrichment analyses. GO terms
revealed significant enrichment in processes such as regulation of
supramolecular fiber organization, protein localization to
organelles, and protein modification. KEGG pathway analysis
highlighted involvement in key signaling pathways including the
MAPK cascade, adherens junction formation, and peroxisomal
B-oxidation. These findings underscore shared molecular
mechanisms T2DM and

underlying sepsis

pathobiology (Figure 2C).

Identification of key genes and diagnostic
efficacy via WGCNA

To systematically identify key genes associated with disease
progression and assess their diagnostic potential, we conducted a
comprehensive analysis using WGCNA on two independent
datasets (GSE76894 and GSE65682). This approach enabled
us to uncover shared molecular mechanisms underlying
T2DM and sepsis. In the GSE76894 dataset, we determined
an optimal soft-threshold power (B) of 17 to ensure the
formation of a scale-free network topology, a hallmark of
biological networks. Hierarchical clustering of the topological
overlap matrix (TOM) revealed five distinct gene modules
(Figure 3A). Notably, the blue module exhibited the highest

Published by Frontiers
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FIGURE 1

The detailed procedures of this study.

correlation with T2DM (correlation coefficient = 0.86, p = 6e-31),
suggesting its relevance to disease pathogenesis. In the
GSE65682 dataset, a p value of 19 was selected to preserve
network scale-free properties. This analysis yielded twelve
gene modules (Figure 3B), with the magenta module showing
the strongest negative correlation with sepsis (correlation
coefficient = -0.61, p = 5e-83). We have supplemented the
version of the R package used in this study in the
Supplementary Table S4.

To identify overlapping genes between the two datasets, we
performed an intersection analysis of the most disease-associated
modules, resulting in 75 shared genes (Figure 3C). Further
refinement by intersecting these genes with previously
identified DEGs yielded five candidate genes: CDC25B, DPP7,
FBXO31, PTCD3, and CNPY2 (Figure 3C), These genes emerged
as promising biomarkers for both T2DM and sepsis, warranting
further investigation into their functional roles.

To evaluate their diagnostic utility, we performed receiver
operating (ROC) analysis. In the
GSE65682  sepsis  dataset, these showed high
discriminative ability, with AUC values reaching 0.970

characteristic curve

genes
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(CDC25B), 0.965 (FBXO31), and 0.967 (PTCD3) (Figures
3D,E). The specific AUC and NES thresholds have been
provided in the Supplementary Table S5. These results suggest
a strong discriminative ability of these genes for sepsis within this
specific dataset. However, these results were obtained from a
single dataset and require validation in independent cohorts
before any clinical application can be considered.

Deciphering the immune
microenvironment and key gene
correlations in T2DM

The immune microenvironment, a dynamic interplay of
growth
factors, inflammatory mediators, and distinct physicochemical

immune cells, extracellular matrix components,
properties, is pivotal for shaping disease progression, diagnostic
outcomes, and therapeutic responses. To investigate the role of
key genes in T2DM progression, we conducted a comprehensive
analysis of their associations with immune infiltration using the

GSE76894 dataset. Quantitative assessment of immune cell
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composition across patients revealed significant differences in
immune cell distribution between T2DM patients and healthy
controls (Figures 4A,B). Specifically, T2DM patients exhibited
elevated levels of B cells, chemokine receptor activity (CCR),
cytolytic activity, plasmacytoid dendritic cells (pDCs), and Type
1I interferon response compared to controls (Figure 4C), indicating

an active yet potentially dysregulated immune landscape.
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We further examined correlations between the key genes and

immune features. CDC25B was positively correlated with tumor-
infiltrating lymphocytes (TILs), Thl cells, and macrophages,
while negatively correlated with T-cell co-stimulation, B cells,
and CCR (Figure 4D). DPP7 was positively correlated with
Thl cells, neutrophils, and TILs, and negatively correlated
with CCR, APC co-inhibition, and checkpoint proteins
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(Figure 4D). Similarly, FBXO31 demonstrated significant
positive correlations with Thl_cells, Mast_cells, TIL, and
significantly negatively correlated with B_cells, CCR, Type_II_
IFN_Reponse (Figure 4D). PTCD3 was significantly positively
correlated with Neutrophils, Thl_cells, TIL, and significantly
negatively correlated with CCR, APC_co_inhibition, Check
-point (Figure 4D). CNPY2 was significantly positively
correlated with Thl_cells, Mast_cells, TIL, and significantly
CCR, Type_II_IFN_
Reponse (Figure 4D). Together, these results suggest that the

negatively correlated with B_cells,

key genes play multifaceted roles in shaping immune responses
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in T2DM, potentially contributing to immune dysregulation and
disease pathogenesis.

Immune microenvironment and key gene
interactions in sepsis

To investigate the role of key genes in modulating immune
responses during sepsis, we analyed the GSE65682 dataset.
Quantification of immune cell composition and examination
of immune cell interactions revealed distinct immunological
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signatures in sepsis (Figure 5A). Compared to healthy controls,
sepsis patients exhibited significantly elevated levels of Tregs
(regulatory T cells), Type II interferon response, and immature
dendritic cells (iDCs) (Figure 5B), suggesting a unique immune
landscape in sepsis, characterized by augmented regulatory and
inflammatory pathways, potentially reflecting the complex interplay
between immune activation and systemic inflammation.
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We further explored the relationships between the key
genes and immune cell infiltration. CDC25B expression
showed positive with TILs, T-cell
stimulation, and CD8" T cells, while negatively correlated

correlations co-
with Tregs, neutrophils, and macrophages (Figure 5C).
Similarly, DPP7 was positively correlated with TILs, HLA
(human leukocyte antigen), and T-cell co-stimulation, while
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negatively correlated with Tregs, iDCs, and APC co-inhibition
(Figure 5C). Related patterns were observed for FBXO3I,
PTCD3, and CNPY2, which also demonstrated significant
correlations with multiple immune cell subsets (Figure 5C),

underscoring their collective involvement in sepsis
immunopathology. These findings suggest that the
identified key genes may help shape the immune

microenvironment in sepsis, potentially influencing disease
progression and immune regulation.
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Immunoregulatory roles of key genes in
both T2DM and sepsis

To investigate the immunoregulatory roles of the identified key
genes in T2DM and sepsis, we conducted an integrative analysis
using the TISIDB database to examine their correlations with
immunomodulatory  factors—including immunosuppressants,
receptors.  Results
demonstrated that these genes exhibit intricate associations with

immunostimulators, chemokines, and
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(A,B) Correlation between key genes and various immunomodulators in the TISIDB database.

immune cell infiltration levels and are likely involved in shaping the
immune landscape of both diseases (Figures 6A,B). While the
observed correlations between key genes and immune cell
populations provide intriguing insights into potential immune
mechanisms, we acknowledge that these findings are derived
from computational deconvolution algorithms which have
inherent limitations. The correlations may reflect both biological
relationships and methodological constraints. However, the
consistency of patterns across multiple genes and the alignment
with known biology of these diseases (e.g., the elevated levels of Tregs
and Type II interferon response in sepsis) suggest that at least some
of these associations are biologically meaningful. Future studies with
single-cell RNA sequencing or flow cytometry validation are needed
to confirm these findings and distinguish true biological signals from
potential computational artifacts. The elevated levels of regulatory
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T cells and type II interferon responses in sepsis patients reported in
relevant literature can provide certain reference basis [29]. Further
validation using single-cell RNA sequencing or flow cytometry will
be essential to confirm these relationships and distinguish true
immune regulatory mechanisms from analytical noise.

Regulatory mechanisms underlying key
gene expression

We next investigated the potential regulatory mechanisms of the
five key genes through transcription factor (TF) and miRNA analyses.
TF enrichment analysis revealed cisbp_M5975 as the top motif
(NES
regulation (Figure 7A). Concurrently, miRcode-based screening

873), suggesting a primary role in transcriptional
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identified 76 miRNAs forming 156 regulatory pairs with the key
genes, visualized as a complex network in Figure 7B. These findings
uncover transcriptional and post-transcriptional regulatory layers,
highlighting potential intervention points for T2DM and sepsis.

Analysis of disease-associated genes and
drug prediction in type 2 diabetes
and sepsis

We further explored the expression patterns of disease-associated
genes by retrieving T2DM-related genes from the GeneCards
database’. Analysis of top-ranked T2DM genes revealed significant
expression differences between control and disease groups for genes
including ABCC8, GCK, HNF1A, HNFIB, INS, INSR, and WESI
(Figure 8A). Notably, PTCD3 showed a strong positive correlation
with ABCC8 (Pearson r = 0.714), while DPP7 was negatively
correlated with INSR (Pearson r = —0.634) (Figure 8A). These
findings suggest potential co-regulatory mechanisms involving
these genes in T2DM pathogenesis.

Similarly, sepsis-related genes obtained from GeneCards were
analyzed across patient groups. Genes such as CSF3, ELANE, F5,
and GALT exhibited significant differential expression between
sepsis patients and controls (Figure 8B). Correlation analysis
showed that CNPY2 was positively correlated with MIF (Pearson

2 https://www.genecards.org/
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r = 0.69), while CDC25B was negatively correlated with TLR2
(Pearson r = —-0.616) (Figure 8B). These correlations suggest that
the key genes may be involved in shared molecular pathways
influencing both T2DM and sepsis pathogenesis.

To identify potential therapeutic interventions, we used the
CMap database to predict drugs targeting the DEGs in T2DM and
sepsis. CMap drug prediction was performed using differentially
expressed genes derived from the expression profiles of the two
diseases. Genes were selected based on log2FC, with the top 150 up-
regulated genes and the top 150 down-regulated genes being used
for the analysis. For T2DM, whose perturbational gene expression
profiles were negatively correlated with the disease signature,
ISOX, THM-I-%4, and  WT-171
(Figure 8C)—corresponding to the top four compounds with the

including Vorinostat,
lowest connectivity scores (denoted as “Score”) in the Supplement?2.
Similarly, for sepsis, analysis highlighted AZD-8055, GW-843682X,
HLI-373, and Phenazone as potential therapeutics, corresponding to
the top compounds in the Supplement3 and showing strong
with the
suggesting their potential to attenuate the

correlations
8D),
septic condition.

negative sepsis  expression  profile

(Figure

Validation of core gene expression by
qRT-PCR

To experimentally validate our findings, we quantified the
expression levels of the shared genes across different sample
groups using qQRT-PCR (Figure 9). The results demonstrated a
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(A,B) Expression patterns of disease-related genes in T2DM and sepsis, along with correlations between key genes and disease-related genes.
(C,D) Drug repurposing predictions using the CMap database for T2DM and sepsis, showing candidate drugs with negative correlations to disease-
specific expression profiles.
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FIGURE 9

gRT-PCR validation of core gene expression levels across
different groups. Relative expression levels of CDC25B, DPP7,
FBXO31, PTCD3 and CNPY25 were compared between control,
sepsis, and sepsis with T2DM groups. Data were analyzed
using one-way ANOVA, with P < 0.05 indicating statistical
significance (*P < 0.05).

significant reduction in the mRNA levels of these genes in the
sepsis group compared to the control group (P < 0.05). Notably,
the expression was further decreased in patients with sepsis
complicated by T2DM (P < 0.05).

Discussion

The burden of sepsis and its association
with T2DM

Sepsis accounts for nearly 20% of global annual deaths, with
more than 20 deaths occurring per minute due to sepsis-related
complications [30]. It remains one of the most severe acute
complications in critically ill patients, particularly those with
infections [31]. Beyond its acute effects, sepsis is associated with
poor long-term outcomes, including high hospitalization costs,
prolonged recovery periods, and significant health burdens,
which severely impacts patients” quality of life. This highlights
the critical need for early prevention and treatment of sepsis.

Patients with diabetes mellitus face a sixfold higher risk of
sepsis compared to non-diabetic individuals [32]. Notably, over
20% of sepsis patients also have diabetes mellitus [33]. High
blood glucose levels and an increase in the coefficient of variation
of blood glucose are significantly associated with mortality from
sepsis in the ICU, and the impact on death increases with the
severity of sepsis [34].T2DM, which constitutes more than 90%
of diabetes cases, is primarily characterized by insulin resistance
and B-cell dysfunction, with the latter playing a central role in
disease progression. B-cell dysfunction occurs more frequently in
critically ill patients because they need to overcome the prevalent
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insulin-resistant state. Moreover, in patients with severe illness,
more than four organ failures or death, p-cell dysfunction often
occurs from the very beginning [35].Understanding the
molecular and immune mechanisms linking sepsis and T2DM
is critical for developing targeted therapies and improving
outcomes for patients with these conditions.

Immune dysregulation in sepsis and T2DM

The high morbidity and mortality rates associated with sepsis,
particularly among diabetic patients, highlight the importance of
understanding the underlying immune dysregulation. Our findings
indicate that T2DM may elevates the risk of sepsis, consistent with
previous studies indicating that diabetic patients are 2-6 times more
likely to develop sepsis than non-diabetic individuals. In T2DM,
chronic hyperglycemia contributes to immune dysfunction,
increasing susceptibility to infections such as sepsis. Our analysis
of immune infiltration in T2DM revealed elevated levels of B cells,
chemokine receptor activity (CCR), and Type II interferon response,
suggesting an enhanced yet dysregulated immune response.

Sepsis itself is characterized by a complex immune response,
often involving both hyperinflammation and immunosuppression.
In our analysis of the GSE65682 dataset, we observed increased
levels of Tregs, Type II interferon response, and iDCs, reflecting the
dual nature of immune dysregulation in sepsis. These findings align
with previous studies demonstrating that sepsis could lead to both
immune hyperactivity (resulting in tissue damage) and immune
suppression (increasing susceptibility to secondary infections).

Key genes involved in sepsis and T2DM
pathogenesis

Differential gene expression and co-expression network
analyses identified five key genes—CDC25B, DPP7, FBXO31,
PTCD3, and CNPY2—that play critical roles in immune
response and cellular regulation in sepsis and T2DM.

CDC25B, a key member of the cell division cycle 25 family, is
a phosphoprotein essential for cell cycle regulation, particularly
the G2/M transition. It was significantly correlated with immune
cell populations such as tumor-infiltrating lymphocytes,
Thl cells, and macrophages in sepsis patients, suggesting a role
beyond proliferation to immune regulation. Polypyrimidine tract-
binding protein 1 (PTBP1), an RNA-binding protein expressed
throughout B-cell development, regulates CDC25B mRNA
abundance and splicing, further implicating CDC25B in B-cell
development and immune function [36]. Our findings suggest
that CDC25B may serve as a central mediator of immune cell
differentiation and function in sepsis.

DPP7 is a serine protease, also known as quiescent cellular
proline dipeptidase (QPP, DPP2, DPPII), which is a proline-cleaved
aminopeptidase, a dipeptidyl peptidase capable of removing the
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N-terminal dipeptide, and edits proteins that are soluble proteins
[37]. Knockdown of DPP7 increased apoptosis, and complete
knockout is embryonically lethal in mice. DPP7 has been
implicated in immune responses and lymphocyte apoptosis [38,
39]. In our study, DPP7 expression positively correlated with
immune activation markers (e.g, T-cell co-stimulation, HLA
expression) and negatively with immunosuppressive factors (e.g.,
Tregs, APC co-inhibition), suggesting a dual role in immune
regulation during sepsis and T2DM.
FBXO31, an E3 ubiquitin ligase, is well-known for its role in
DNA damage
degradation to

the response where it mediates Cyclin
D1 halt the Notably, a

groundbreaking recent study [40] has redefined its function,

cell cycle.

revealing that FBXO31 also serves as a crucial surveillance
by
C-terminal amidated proteins for degradation. Given the central

mechanism for oxidative protein damage targeting
role of oxidative stress in sepsis pathogenesis, we hypothesize that
FBXO31 may contribute to immune regulation during sepsis by
maintaining proteostasis in immune cells. Specifically, we propose
that FBXO31 helps clear oxidatively damaged proteins, thereby
preserving cellular function and mitigating immune dysfunction.
This proposed mechanism, however, remains a testable hypothesis
requiring further experimental validation.

PTCD3, a mitochondrial ribosomal protein, was associated
with both immunosuppressive and immunostimulatory factors
in sepsis, linking mitochondrial dysfunction to immune
dysregulation [41]. Given that mitochondrial dysfunction is a
hallmark of ferroptosis, the association between PTCD3 and
immune cell regulation may provide a novel mechanism by
which ferroptosis contributes to immune suppression and

organ dysfunction in sepsis patients.

Ferroptosis as a central mechanism in
sepsis and T2DM

Ferroptosis, a form of iron-dependent regulated cell death driven
by lipid peroxidation, has emerged as a critical mechanism in the
progression of sepsis and T2DM. Iron metabolism is closely linked to
B-cell function, participating in insulin secretion, proliferation,
differentiation, and glucose metabolism. Dysregulated iron
metabolism and ROS accumulation contribute to B-cell loss via
ferroptosis. In the context of sepsis, ferroptosis is associated with
pathogen-induced inflammatory responses, further connecting iron
dysregulation to immune-mediated cell death [42, 43]. Evidence
from animal models supports its role: AMPK activation reduced
ferroptosis in the hippocampus of mice with diabetes, improving
cognitive ability [44]. And nobiletin, a plant-based polymethoxy
flavone, can regulate the composition of the intestinal microbiota in
septic mice [45]. By modulating the intestinal microbiota, it can
alleviate ferroptosis in liver injury caused by sepsis. Our findings
further support that ferroptosis may play a key role in the progress of
both conditions, particularly in the context of chronic inflammation
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and oxidative stress. Key genes identified were enriched in
ferroptosis-related pathways such as peroxisome signaling, which
regulates oxidative stress.

The interplay among iron metabolism, ROS accumulation, and
immune dysfunction underscores the importance of ferroptosis in
sepsis, especially in diabetic patients. Chronic hyperglycemia
individuals  to

inflammation and promoting ferroptosis, likely contributing to

predisposes oxidative stress, exacerbating

the increased mortality observed in diabetic sepsis patients.

Implications for therapeutic interventions

Using the CMap database, we identified several potential
therapeutic targeting dysregulated pathways in sepsis and T2DM.
Compounds such as ISOX and Vorinostat—which has been
reported to exhibit efficacy in anti-tumor and anti-epileptic
Notably,
inhibitor, is crucial for the regulation of ferroptosis [46].
THM-I1-94 were identified as potential modulators of T2DM-
associated gene dysregulation, while drugs like AZD-8055 and

contexts. Vorinostat, as a histone deacetylase

HLI-373 showed strong negative correlations with the sepsis gene
expression profile, suggesting their potential to attenuate or
reverse disease progression in sepsis patients.

In addition, studies have shown that Echinacea extract can be
used to improve the immune system and treat respiratory symptoms
caused by bacterial infections [47].Ibudilast can act as an inhibitor
and bind to phosphodiesterase 4 (PDE4), a new target for
inflammatory diseases, to achieve the effect of inhibiting
[48]. The
compounds offers promising avenues for therapeutic intervention.

This study offers important insights into the molecular
mechanisms linking sepsis and T2DM, but several limitations
should be acknowledged. First, our findings are derived
exclusively from publicly available datasets, which may introduce

inflammatory ~ responses identification of these

batch effects, platform-specific biases, or demographic limitations
that affect generalizability. Second, the immune infiltration estimates
were generated through computational deconvolution methods
(e.g, CIBERSORT), which infer rather than directly measure
immune cell abundances and should be interpreted with caution.
Functional experiments are required to confirm these observations.
Additionally, while computational methods provided valuable
estimates of potential therapeutic drugs, more precise
experimental approaches and clinical testing are needed. Finally,
the emerging role of ferroptosis in these conditions also requires
further exploration. The complex interplay between sepsis, T2DM,
and other comorbidities complicates the interpretation of results,
highlighting the need for deeper mechanistic studies and validation
in diverse patient populations.

To address these limitations mechanistically, we propose a
multi-phase experimental framework for future investigation. In
vitro, we will measure established ferroptosis markers in blood or

tissue samples from septic patients with and without T2DM,
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correlating these with hub gene expression and clinical
parameters to validate the pathophysiological relevance of our
findings. Then primary human immune cells will be cultured
under high-glucose conditions and subjected to genetic
(e.g, siRNA-mediated  knockdown
of key hub genes, combined with
of
ferroptosis inhibitors (e.g., ferrostatin-1, liproxstatin-1)). These
will effects
markers—such as lipid peroxidation, GPX4 activity, and

perturbation or
overexpression)
pharmacological ~ modulation

ferroptosis  (including

experiments directly assess on ferroptotic
ACSL4 expression—along with functional immune readouts. In
vivo, the cecal ligation and puncture model will be employed in
diabetic (e.g., db/db) mice, integrating tissue-specific knockout
approaches with treatment using candidate compounds to
evaluate outcomes including survival, organ injury, and
immune status. Finally, the intricate interplay among sepsis,
T2DM, and associated comorbidities underscores the critical

need for such in-depth mechanistic exploration.

Conclusion

In conclusion, our study indicates the potential importance of
key genes including CDC25B, DPP7, FBXO31, and PTCD3 in the
shared pathogenesis of sepsis and T2DM. These genes may play a
key role in immune regulation, cell cycle control, and ferroptosis,
suggesting their promise as candidate therapeutic targets. Through
our analysis of the potential molecular connections between these
conditions, we provide a conceptual foundation for advancing
precision medicine strategies aimed at improving outcomes in
patients with sepsis, particularly those with comorbid diabetes.
Future research should prioritize experimental validation of the
identified candidate targets and further elucidate the functional
role of ferroptosis in the progression of sepsis and T2DM.

Author contributions

HX, ZD, CL, and YT conducted the experimental work.
The manuscript was primarily written by HX and ZD. HX and
XH conceived and designed the research framework. All
authors contributed to the article and approved the
submitted version.

Data availability
The data utilized in this study were sourced from the NCBI

GEO database, accessible at https://www.ncbinlm.nih.gov/geo/

info/datasets.html.

Experimental Biology and Medicine

15

10.3389/ebm.2025.10612

Ethics statement

The studies involving humans were approved by First
Affiliated Hospital of Bengbu Medical University. The studies
were conducted in accordance with the local legislation and
institutional requirements. The participants provided their
written informed consent to participate in this study.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This study was
supported by Key Natural Science Research Project of Anhui
Educational =~ Committee, —Grant/Award ~Number: No.
2023AH051996; Key Natural Project of Bengbu Medical
College, Grant/Award Number: Nos 2021byzd157 and
2022byzd039; Traditional Chinese Medicine Research Project
of Anhui Association of Traditional Chinese Medicine (No.
2024ZYYXH156).

Acknowledgments

We are grateful for all the financial support for this work.

Conflict of interest

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever
possible. If you identify any issues, please contact us.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.ebm-journal.org/articles/10.3389/ebm.

2025.10612/full#supplementary-material

Published by Frontiers
Society for Experimental Biology and Medicine


https://www.ncbi.nlm.nih.gov/geo/info/datasets.html
https://www.ncbi.nlm.nih.gov/geo/info/datasets.html
https://www.ebm-journal.org/articles/10.3389/ebm.2025.10612/full#supplementary-material
https://www.ebm-journal.org/articles/10.3389/ebm.2025.10612/full#supplementary-material
https://doi.org/10.3389/ebm.2025.10612

Xiao et al.

References

1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer
M, et al. The third international consensus definitions for sepsis and septic shock
(Sepsis-3). JAMA (2016) 315(8):801-10. doi:10.1001/jama.2016.0287

2. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al.
Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis
for the global burden of disease Study. The Lancet (2020) 395(10219):200-11.
doi:10.1016/S0140-6736(19)32989-7

3. Vincent JL, Jones G, David S, Olariu E, Cadwell KK. Frequency and mortality of
septic shock in Europe and North America: a systematic review and meta-analysis.
Crit Care (2019) 23(1):196. doi:10.1186/s13054-019-2478-6

4. Fleischmann-Struzek C, Mellhammar L, Rose N, Cassini A, Rudd KE,
Schlattmann P, et al. Incidence and mortality of hospital- and ICU-treated
sepsis: results from an updated and expanded systematic review and meta-
analysis. Intensive Care Med (2020) 46(8):1552-62. doi:10.1007/s00134-020-
06151-x

5. Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S.
Recognizing sepsis as a global health priority - a WHO resolution. N Engl ] Med
(2017) 377(5):414-7. doi:10.1056/NEJMp1707170

6. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al.
IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates
for 2021 and projections for 2045. Diabetes Res Clin Pract (2022) 183:109119.
doi:10.1016/j.diabres.2021.109119

7. Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al.
Global, regional, and national burden of diabetes from 1990 to 2021, with
projections of prevalence to 2050: a systematic analysis for the global burden of
disease study 2021. The Lancet (2023) 402(10397):203-34. doi:10.1016/S0140-
6736(23)01301-6

8. Monge L, Gnavi R, Carna P, Broglio F, Boffano GM, Giorda CB. Incidence of
hospitalization and mortality in patients with diabetic foot regardless of
amputation: a population study. Acta Diabetol (2020) 57(2):221-8. doi:10.1007/
500592-019-01412-8

9. Schuetz P, Castro P, Shapiro NI. Diabetes and sepsis: preclinical findings and
clinical relevance. Diabetes Care (2011) 34(3):771-8. doi:10.2337/dc10-1185

10. Shah BR, Hux JE. Quantifying the risk of infectious diseases for people with
diabetes. Diabetes Care (2003) 26(2):510-3. do0i:10.2337/diacare.26.2.510

11. Frydrych LM, Fattahi F, He K, Ward PA, Delano MJ. Diabetes and sepsis: risk,
recurrence, and ruination. Front Endocrinol (Lausanne) (2017) 8:271. doi:10.3389/
fendo.2017.00271

12. Frydrych LM, Bian G, O’Lone DE, Ward PA, Delano MJ. Obesity and type
2 diabetes mellitus drive immune dysfunction, infection development, and sepsis
mortality. J Leukoc Biol (2018) 104(3):525-34. doi:10.1002/JLB.5VMR0118-021RR

13. Bertoni AG, Saydah S, Brancati FL. Diabetes and the risk of infection-related
mortality in the U.S. Diabetes Care (2001) 24(6):1044-9. doi:10.2337/diacare.24.6.
1044

14. Li Q, Gong X. Clinical significance of the detection of procalcitonin and
C-reactive protein in the intensive care unit. Exp Ther Med (2018) 15(5):4265-70.
doi:10.3892/etm.2018.5960

15. Stacey HJ, Clements CS, Welburn SC, Jones JD. The prevalence of methicillin-
resistant Staphylococcus aureus among diabetic patients: a meta-analysis. Acta
Diabetol (2019) 56(8):907-21. doi:10.1007/s00592-019-01301-0

16. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, et al. ROS and ROS-mediated
cellular signaling. Oxidative Med Cell Longevity (2016) 2016:4350965. doi:10.1155/
2016/4350965

17. Khan I, Yousif A, Chesnokov M, Hong L, Chefetz I. A decade of cell death
studies: breathing new life into necroptosis. Pharmacol and Ther (2021) 220:
107717. doi:10.1016/j.pharmthera.2020.107717

18. Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell
death for therapy. Pharmacol and Ther (2022) 232:108010. doi:10.1016/j.
pharmthera.2021.108010

19. Meng Z, Liang H, Zhao J, Gao J, Liu C, Ma X, et al. HMOX1 upregulation
promotes ferroptosis in diabetic atherosclerosis. Life Sci (2021) 284:119935. doi:10.
1016/j.1fs.2021.119935

20. Zhao P, Li X, Yang Q, Lu Y, Wang G, Yang H, et al. Malvidin alleviates
mitochondrial dysfunction and ROS accumulation through activating AMPK-a/
UCP2 axis, thereby resisting inflammation and apoptosis in SAE mice. Front
Pharmacol (2023) 13:1038802. doi:10.3389/fphar.2022.1038802

21. X1 L, Gy Z, R G, N C. Ferroptosis in sepsis: the mechanism, the role and the
therapeutic potential. Front Immunol (2022) 13:956361. doi:10.3389/fimmu.2022.
956361

Experimental Biology and Medicine

10.3389/ebm.2025.10612

22. Carey IM, Critchley JA, DeWilde S, Harris T, Hosking FJ, Cook DG. Risk
of infection in type 1 and type 2 diabetes compared with the general
population: a matched cohort study. Diabetes Care (2018) 41(3):513-21.
doi:10.2337/dc17-2131

23. Chen C, Hou J, Tanner JJ, Cheng J. Bioinformatics methods for mass
spectrometry-based proteomics data analysis. Int J Mol Sci (2020) 21(8):2873.
doi:10.3390/ijms21082873

24. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC,
et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune
landscape in human cancer. Immunity (2013) 39(4):782-95. doi:10.1016/j.immuni.
2013.10.003

25. Danaher P, Warren S, Dennis L, D’Amico L, White A, Disis ML, et al. Gene
expression markers of tumor infiltrating leukocytes. J ImmunoTherapy Cancer
(2017) 5:18. doi:10.1186/s40425-017-0215-8

26. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The
connectivity map: using gene-expression signatures to connect small
molecules, genes, and disease. Science (2006) 313(5795):1929-35. doi:10.
1126/science.1132939

27. Wu C, Feng H, Tian M, Chu B, Liu X, Zeng S, et al. Identification and
validation of diagnostic genes IFI44 and IRF9 in insomnia-associated
autoimmune uveitis. Front Immunol (2025) 16:1519371. doi:10.3389/fimmu.
2025.1519371

28. American Diabetes Association. 2. Classification and diagnosis of diabetes:
standards of medical care in Diabetes-2021. Diabetes Care (2021) 44(Suppl. 1):
S15-S33. doi:10.2337/dc21-S002

29. He W, Yao C, Wang K, Duan Z, Wang S, Xie L. Single-cell landscape of
immunological responses in elderly patients with sepsis. Immun Ageing (2024)
21(1):40. doi:10.1186/512979-024-00446-z

30. Kempker JA, Martin GS. A global accounting of sepsis. The Lancet (2020)
395(10219):168-70. doi:10.1016/S0140-6736(19)33065-X

31. Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC,
Marathe GK. Sepsis: in search of cure. Inflamm Res (2016) 65(8):587-602.
doi:10.1007/s00011-016-0937-y

32.Xin Q, Xie T, Chen R, Wang H, Zhang X, Wang S, et al. Predictive nomogram
model for major adverse kidney events within 30 days in sepsis patients with type
2 diabetes mellitus. Front Endocrinol (Lausanne) (2022) 13:1024500. doi:10.3389/
fendo.2022.1024500

33. van Vught LA, Scicluna BP, Hoogendijk AJ, Wiewel MA, Klein Klouwenberg
PM, Cremer OL, et al. Association of diabetes and diabetes treatment with the host
response in critically ill sepsis patients. Crit Care (2016) 20(1):252. doi:10.1186/
s13054-016-1429-8

34. Lu Z, Tao G, Sun X, Zhang Y, Jiang M, Liu Y, et al. Association of blood
glucose level and glycemic variability with mortality in sepsis patients during ICU
hospitalization. Front Public Health (2022) 10:857368. doi:10.3389/fpubh.2022.
857368

35. Das S, Misra B, Roul L, Minz NT, Pattnaik M, Baig MA. Insulin resistance and
beta cell function as prognostic indicator in multi-organ dysfunction syndrome.
Metab Syndr Relat Disord (2009) 7(1):47-51. doi:10.1089/met.2008.0025

36. Monzén-Casanova E, Matheson LS, Tabbada K, Zarnack K, Smith CW,
Turner M. Polypyrimidine tract-binding proteins are essential for B cell
development. Elife (2020) 9:e53557. doi:10.7554/elife.53557

37. Zhen EY, Jin Z, Ackermann BL, Thomas MK, Gutierrez JA. Circulating
FGF21 proteolytic processing mediated by fibroblast activation protein. Biochem |
(2016) 473(5):605-14. doi:10.1042/BJ20151085

38. Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, et al.
Integrating common and rare genetic variation in diverse human populations.
Nature (2010) 467(7311):52-8. doi:10.1038/nature09298

39. Marku A, Galli A, Marciani P, Dule N, Perego C, Castagna M. Iron
metabolism in pancreatic beta-cell function and dysfunction. Cells (2021)
10(11):2841. doi:10.3390/cells10112841

40. Muhar MF, Farnung J, Cernakova M, Hofmann R, Henneberg LT, Pfleiderer
MM, et al. C-terminal amides mark proteins for degradation via SCF-FBXO31.
Nature (2025) 638(8050):519-27. doi:10.1038/s41586-024-08475-w

41. Lightowlers RN, Chrzanowska-Lightowlers ZM. Human pentatricopeptide
proteins: only a few and what do they do? RNA Biol (2013) 10(9):1433-8. doi:10.
4161/rna.24770

42. Yang Y, Wang Y, Guo L, Gao W, Tang TL, Yan M. Interaction between
macrophages and ferroptosis. Cell Death Dis (2022) 13(4):355. doi:10.1038/s41419-022-
04775-2

Published by Frontiers
Society for Experimental Biology and Medicine


https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.1186/s13054-019-2478-6
https://doi.org/10.1007/s00134-020-06151-x
https://doi.org/10.1007/s00134-020-06151-x
https://doi.org/10.1056/NEJMp1707170
https://doi.org/10.1016/j.diabres.2021.109119
https://doi.org/10.1016/S0140-6736(23)01301-6
https://doi.org/10.1016/S0140-6736(23)01301-6
https://doi.org/10.1007/s00592-019-01412-8
https://doi.org/10.1007/s00592-019-01412-8
https://doi.org/10.2337/dc10-1185
https://doi.org/10.2337/diacare.26.2.510
https://doi.org/10.3389/fendo.2017.00271
https://doi.org/10.3389/fendo.2017.00271
https://doi.org/10.1002/JLB.5VMR0118-021RR
https://doi.org/10.2337/diacare.24.6.1044
https://doi.org/10.2337/diacare.24.6.1044
https://doi.org/10.3892/etm.2018.5960
https://doi.org/10.1007/s00592-019-01301-0
https://doi.org/10.1155/2016/4350965
https://doi.org/10.1155/2016/4350965
https://doi.org/10.1016/j.pharmthera.2020.107717
https://doi.org/10.1016/j.pharmthera.2021.108010
https://doi.org/10.1016/j.pharmthera.2021.108010
https://doi.org/10.1016/j.lfs.2021.119935
https://doi.org/10.1016/j.lfs.2021.119935
https://doi.org/10.3389/fphar.2022.1038802
https://doi.org/10.3389/fimmu.2022.956361
https://doi.org/10.3389/fimmu.2022.956361
https://doi.org/10.2337/dc17-2131
https://doi.org/10.3390/ijms21082873
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1186/s40425-017-0215-8
https://doi.org/10.1126/science.1132939
https://doi.org/10.1126/science.1132939
https://doi.org/10.3389/fimmu.2025.1519371
https://doi.org/10.3389/fimmu.2025.1519371
https://doi.org/10.2337/dc21-S002
https://doi.org/10.1186/s12979-024-00446-z
https://doi.org/10.1016/S0140-6736(19)33065-X
https://doi.org/10.1007/s00011-016-0937-y
https://doi.org/10.3389/fendo.2022.1024500
https://doi.org/10.3389/fendo.2022.1024500
https://doi.org/10.1186/s13054-016-1429-8
https://doi.org/10.1186/s13054-016-1429-8
https://doi.org/10.3389/fpubh.2022.857368
https://doi.org/10.3389/fpubh.2022.857368
https://doi.org/10.1089/met.2008.0025
https://doi.org/10.7554/elife.53557
https://doi.org/10.1042/BJ20151085
https://doi.org/10.1038/nature09298
https://doi.org/10.3390/cells10112841
https://doi.org/10.1038/s41586-024-08475-w
https://doi.org/10.4161/rna.24770
https://doi.org/10.4161/rna.24770
https://doi.org/10.1038/s41419-022-04775-z
https://doi.org/10.1038/s41419-022-04775-z
https://doi.org/10.3389/ebm.2025.10612

Xiao et al.

43. Pan W, Xiang L, Liang X, Du W, Zhao J, Zhang S, et al. Vitronectin destroyed
intestinal epithelial cell differentiation through activation of PDE4-Mediated
ferroptosis in inflammatory bowel disease. Mediators Inflamm (2023) 2023:
1-16. doi:10.1155/2023/6623329

44.Xie Z, Wang X, Luo X, Yan J, Zhang J, Sun R, et al. Activated AMPK mitigates
diabetes-related cognitive dysfunction by inhibiting hippocampal ferroptosis.
Biochem Pharmacol (2023) 207:115374. doi:10.1016/j.bcp.2022.115374

45. Huang W, Chen H, He Q, Xie W, Peng Z, Ma Q, et al. Nobiletin protects
against ferroptosis to alleviate sepsis-associated acute liver injury by
modulating the gut microbiota. Food Funct (2023) 14(16):7692-704. doi:10.
1039/d3fo01684f

Experimental Biology and Medicine

17

10.3389/ebm.2025.10612

46. Yang Z, Su W, Zhang Q, Niu L, Feng B, Zhang Y, et al. Lactylation of
HDACI confers resistance to ferroptosis in colorectal cancer. Adv Sci (2025) 12(12):
€2408845. doi:10.1002/advs.202408845

47. Sharifi-Rad M, Mnayer D, Morais-Braga MFB, Carneiro JNP, Bezerra CF,
Coutinho HDM, et al. Echinacea plants as antioxidant and antibacterial agents:
from traditional medicine to biotechnological applications. Phytotherapy Res (2018)
32(9):1653-63. doi:10.1002/ptr.6101

48. Yang D, Yang Y, Zhao Y. Ibudilast, a Phosphodiesterase-4 inhibitor,
ameliorates acute respiratory distress syndrome in neonatal mice by alleviating
inflammation and apoptosis. Med Sci Monit (2020) 26:€922281. doi:10.12659/
MSM.922281

Published by Frontiers
Society for Experimental Biology and Medicine


https://doi.org/10.1155/2023/6623329
https://doi.org/10.1016/j.bcp.2022.115374
https://doi.org/10.1039/d3fo01684f
https://doi.org/10.1039/d3fo01684f
https://doi.org/10.1002/advs.202408845
https://doi.org/10.1002/ptr.6101
https://doi.org/10.12659/MSM.922281
https://doi.org/10.12659/MSM.922281
https://doi.org/10.3389/ebm.2025.10612

	Bioinformatics-based screening and validation of ferroptosis-related genes in sepsis and type 2 diabetes mellitus
	Impact statement
	Introduction
	Materials and methods
	Data download
	Differential expression and functional enrichment analysis
	WGCNA analysis
	Immune cell infiltration analysis
	Transcriptional regulation analysis of key genes
	miRNA network construction
	Cmap drug prediction
	Collection of patients and healthy controls
	Total RNA extraction and qRT-PCR
	Statistical analysis

	Results
	Identification of differential expression genes and functional enrichment analysis
	Identification of key genes and diagnostic efficacy via WGCNA
	Deciphering the immune microenvironment and key gene correlations in T2DM
	Immune microenvironment and key gene interactions in sepsis
	Immunoregulatory roles of key genes in both T2DM and sepsis
	Regulatory mechanisms underlying key gene expression
	Analysis of disease-associated genes and drug prediction in type 2 diabetes and sepsis
	Validation of core gene expression by qRT-PCR

	Discussion
	The burden of sepsis and its association with T2DM
	Immune dysregulation in sepsis and T2DM
	Key genes involved in sepsis and T2DM pathogenesis
	Ferroptosis as a central mechanism in sepsis and T2DM
	Implications for therapeutic interventions

	Conclusion
	Author contributions
	Data availability
	Ethics statement
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Supplementary material
	References


