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Abstract

Peripheral nerve injuries (PNIs) pose a significant clinical challenge, often

leading to incomplete functional recovery despite current treatments.

Platelet-rich plasma (PRP), which contains high levels of growth factors and

bioactivemolecules, has emerged as a promising regenerative therapy for nerve

repair and restoring function. This review consolidates current evidence on PRP

applications in treating peripheral nerve injuries, examining molecular

mechanisms, clinical outcomes, and therapeutic potential. PRP markedly

enhances nerve regeneration, improves recovery of sensory and motor

functions, and alleviates neuropathic pain across various nerve injuries. It

promotes axonal growth, reduces scar formation, stimulates Schwann cell

proliferation, and modulates inflammation through the release of

neurotrophic factors, including PDGF, VEGF, TGF-β, and IGF-1. Combining

PRP with surgical techniques and biomaterial scaffolds yields better therapeutic

results. Key factors influencing efficacy include platelet concentration,

leukocyte content, activation methods, and patient-specific variables. PRP is

a safe and effective option for peripheral nerve injury repair. However,

challenges persist in standardizing preparation protocols, optimizing

treatment timing, and fully understanding molecular mechanisms. Future

research should focus on personalized PRP formulations, combination

therapies, and large-scale randomized controlled trials to develop definitive

clinical guidelines.
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Impact statement

Peripheral nerve injuries often lead to long-term disability,

and current treatment options offer limited functional recovery.

This review is important because it consolidates and critically

evaluates the growing body of research on the use of platelet-rich

plasma (PRP) as a novel, biologically based therapy for peripheral

nerve repair. While PRP has gained attention in various fields of

regenerative medicine, its role in nerve healing is still emerging

and not yet standardized. By bringing together recent findings

from both preclinical and clinical studies, this work provides new

insight into how PRP promotes nerve regeneration through anti-

inflammatory effects, stimulation of nerve-supporting cells, and

delivery of growth factors that accelerate healing. It also explores

how PRP can be combined with existing surgical and biomaterial

approaches for improved outcomes. This review contributes to

the field by highlighting both the therapeutic promise and the

current limitations of PRP, and by outlining future research

directions needed to optimize its clinical application. As such, it

helps define a clearer path forward for integrating PRP into

routine nerve injury management.

Introduction

The central nervous system (CNS), comprising the brain and

spinal cord, acts as the central control hub that communicates

with various body organs via an extensive network of nerve fibres

extending throughout the peripheral nervous system. This

communication occurs through electrical and chemical signals

that facilitate coordinated physiological functions and responses

to environmental stimuli. These peripheral nerves can be

systematically classified based on their anatomical locations

and functional characteristics into three primary categories:

mixed nerves (containing both sensory and motor fibres),

motor nerves (responsible for muscle contraction and

movement), and sensory nerves (transmitting sensory

information from receptors to the CNS) [1, 2].

Peripheral nerve injury (PNI) represents a significant global

health concern and a leading cause of long-term disability,

affecting millions of individuals worldwide with substantial

socioeconomic implications. The consequences of PNI are often

devastating, resulting in severe sensory-motor dysfunction that

impairs daily activities, chronic neurogenic pain that significantly

reduces quality of life, and potential permanent disability requiring

long-term rehabilitation [3–5]. The etiology of PNI is diverse and

multifactorial, encompassing neurodegenerative diseases that

progressively damage nerve structure and function, acute open

trauma from accidents or surgical procedures, and chronic nerve

compression syndromes such as carpal tunnel syndrome or cubital

tunnel syndrome [6, 7].

In the anatomically complex head and neck region,

peripheral nerve injuries pose challenges due to the critical

functional roles of affected nerves. Damage commonly affects

several key cranial and peripheral nerves, including the inferior

alveolar nerve (resulting in altered sensation in the lower lip and

chin), the lingual nerve (causing taste disturbances and tongue

numbness), the facial nerve (leading to facial paralysis and

expression difficulties), and the hypoglossal nerve (affecting

tongue movement and speech articulation). These injuries can

severely impact essential functions such as mastication, speech,

facial expression, and overall oral function [8].

While peripheral nerve fibres demonstrate a remarkable

regenerative capacity and can achieve spontaneous healing

within weeks to months under optimal conditions, this

natural recovery process is often incomplete or insufficient,

especially in cases involving significant nerve damage, large

gaps, or unfavourable local conditions [9]. The clinical reality

presents considerable therapeutic challenges, as fewer than half

of patients with documented PNI undergo surgical nerve repair,

often due to factors such as delayed diagnosis, patient

comorbidities, or lack of specialized surgical expertise. Among

those who do receive surgical intervention, only 40–50% attain

complete functional recovery, highlighting the limitations of

current treatment approaches and the urgent need for

improved options [10]. Current management strategies

include both surgical techniques (such as direct repair, nerve

grafting, and nerve transfers) and conservative methods, with

non-surgical treatments encompassing targeted physiotherapy

programmes, emerging cell-based therapies using stem cells or

Schwann cells (SC), and pharmaceutical interventions aimed at

managing pain and encouraging nerve regeneration [3–5, 11].

Platelet-rich plasma (PRP) represents an innovative autologous

biological therapeutic derived through centrifugal separation of the

patient’s own blood, specifically isolating the plasma fraction

enriched with platelet concentrations that typically exceed normal

physiological levels by 3-5-fold [12, 13]. This preparation process

involves collecting whole blood, followed by specific centrifugation

protocols that concentrate platelets while preserving their functional

integrity and bioactive properties. The resulting PRP product serves

as a potent reservoir of endogenous bioactive molecules, being

particularly rich in multiple growth factors and cytokines

essential for tissue repair and regeneration. These include

granulocyte-macrophage colony-stimulating factor (GM-CSF) for

cellular proliferation, vascular endothelial growth factor A (VEGF-

A) for angiogenesis, epithelial growth factor (EGF) for cellular

differentiation, transforming growth factor β (TGF-β) for tissue

remodeling, platelet-derived growth factor (PDGF) for cellular

migration and proliferation, hepatocyte growth factor (HGF) for

neuroprotection, and insulin-like growth factor 1 (IGF-1) for nerve

regeneration [14].

PRP has established a substantial clinical track record

demonstrating therapeutic efficacy across diverse medical

applications, including accelerated healing in sports-related

injuries, enhanced recovery in spinal cord trauma, improved

wound healing in chronic conditions, and successful outcomes in

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine02

Shang et al. 10.3389/ebm.2025.10746

https://doi.org/10.3389/ebm.2025.10746


plastic and reconstructive surgery procedures [15]. Specifically in

the context of peripheral nerve injuries, PRP exhibits

multifaceted therapeutic mechanisms, demonstrating

significant neurogenic properties that promote nerve fibre

regeneration, neuroprotective effects that prevent secondary

nerve degeneration, and anti-inflammatory activities that

modulate detrimental neuroinflammation while creating a

favourable microenvironment for healing [8, 16–18]. These

comprehensive therapeutic effects are mediated through PRP’s

complex role in orchestrating nerve regeneration processes,

including SC proliferation, axonal sprouting, remyelination,

and its documented capacity to alleviate debilitating

neuropathic pain through modulation of inflammatory

pathways and pain signaling mechanisms [19]. Compelling

clinical evidence continues to emerge supporting PRP’s

therapeutic potential, as exemplified by the case study

conducted by García de Cortázar et al. [20], who documented

satisfactory neurological recovery and functional improvement

in a patient with significant nerve injury following a structured

PRP treatment protocol administered over 11 months [20].

Given the demonstrated therapeutic potential of PRP in

managing peripheral nerve injuries, along with the urgent clinical

need for more effective treatment methods to improve functional

recovery, this comprehensive review aims to systematically

summarize, critically analyze, and discuss current research

progress on PRP applications for PNI. The review will evaluate

both preclinical and clinical evidence, treatment protocols,

outcomes, and future research directions to enhance PRP-based

therapies for peripheral nerve injury management.

Application of PRP in the treatment of
peripheral nerve injury

Accumulating evidence from both preclinical and clinical

studies shows that PRP has multiple therapeutic properties vital

for peripheral nerve repair. The main reason for PRP’s effectiveness

is its ability to regulate neuroinflammation through a dual

mechanism involving direct platelet-derived anti-inflammatory

mediators and the recruitment of reparative cell populations that

release additional anti-inflammatory factors [21–23]. When

activated, platelets in PRP release stored anti-inflammatory

cytokines such as interleukin-10 (IL-10) and TGF-β, while also

attracting macrophages, mesenchymal stem cells, and other

regenerative cells to the injury site. These recruited cells further

enhance the anti-inflammatory environment by secretingmore anti-

inflammatory mediators, resulting in a sustained therapeutic effect

that lasts beyond the initial platelet activation phase.

Beyond these anti-inflammatory properties, PRP exhibits

significant neuroprotective capabilities by preventing

secondary neuronal death and promoting axonal survival

following peripheral nerve injury. Furthermore, the

neurogenic properties of PRP are mediated through the

release of neurotrophic factors, including nerve growth factor

(NGF), brain-derived neurotrophic factor (BDNF), and

neurotrophin-3 (NT-3), which stimulate axonal sprouting,

guide nerve fiber growth, and support the maintenance of

neuronal phenotype during the regeneration process [1, 24].

Consequently, these growth factors work synergistically to

create an optimal microenvironment that facilitates both

proximal nerve stump survival and distal target reinnervation.

Building upon these fundamental mechanisms, the

therapeutic potential of PRP has been extensively investigated

across various peripheral nerve injuries, with consistent positive

outcomes reported for multiple anatomical locations.

Comprehensive studies have documented PRP’s efficacy in

treating injuries to major peripheral nerves, including the

sciatic nerve, facial nerve, median nerve, and even applications

extending to central nervous system pathologies [1, 21–24].

Moreover, the versatility of PRP treatment is further

evidenced by its successful application in diverse clinical

scenarios, ranging from complete nerve transection repairs to

functional restoration across peripheral nerve gaps [25].

In addition to its regenerative capabilities, PRP therapy has

demonstrated significant analgesic properties in treating

neuropathic pain associated with peripheral nerve injuries.

The pain-relieving mechanisms involve the downregulation of

pro-inflammatory cytokines and the modulation of pain

signaling pathways at both peripheral and central levels [18,

25–27]. Notably, recent studies have shown that PRP application

effectively reduces neuropathic pain in osteoarthritis patients by

specifically downregulating microglial activation in the spinal

cord, thereby interrupting the central sensitization processes that

contribute to chronic pain states [28]. This dual peripheral and

central mechanism of pain relief represents a significant

advantage over conventional analgesic approaches.

The mechanisms underlying these regenerative effects are

significantly mediated through PRP’s impact on Schwann cell

biology. SC play a crucial role in peripheral nerve regeneration

by providing structural support, producing neurotrophic factors,

and facilitating remyelination of regenerating axons. Supporting

this understanding, Salarinia et al. [29] demonstrated that PRP

treatment significantly enhances SC proliferation in experimental

spinal cord injury models in rats, leading to improved functional

outcomes. Subsequently, investigations have confirmed PRP’s

ability to promote both SC migration to injury sites and their

subsequent proliferation, creating a cellular environment conducive

to nerve repair [25, 30]. These cellular effects are attributed to the

growth factors present in PRP, particularly PDGF and HGF, which

specifically target SC receptors and activate proliferation pathways.

Collectively, the diverse applications andmechanisms of PRP

in peripheral nerve regeneration have been systematically

documented across multiple research studies, with findings

consistently supporting its therapeutic value in nerve repair,

functional restoration, pain management, and treatment of

degenerative neurological conditions [8, 31–36]. The
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comprehensive body of evidence regarding PRP applications in

various peripheral nerve regeneration scenarios is summarized in

Figure 1, providing a systematic overview of treatment protocols,

outcomes, and clinical effectiveness across different nerve injury

types and anatomical locations.

Cellular and molecular mechanisms
driving PRP therapy effects

The process of concentrating and separating platelets from

the patient’s own blood is known as PRP therapy. Upon

activation, these platelets release a potent array of bioactive

molecules stored within their granules, including cytokines,

growth factors, and signaling molecules. These components

are fundamental orchestrators of tissue repair and wound

healing processes [37]. A primary mechanism involves the

direct stimulation of cellular proliferation and differentiation

essential for regeneration. Growth factors within PRP, such as

PDGF, TGF-β, and VEGF, activate key cell types: mesenchymal

stem cells (MSCs), promoting their proliferation and

differentiation into various tissue-specific lineages; endothelial

cells, stimulating angiogenesis to improve local vascularization;

and fibroblasts, enhancing their synthesis of crucial extracellular

matrix (ECM) components like collagen and fibronectin [38, 39].

Furthermore, PRP actively promotes the production of

essential structural molecules, including fibronectin, collagen,

and hyaluronic acid. Collectively, these molecules form a

provisional ECM scaffold. This scaffold provides critical

mechanical support to the healing site, facilitates cell

migration, and creates a conducive environment for tissue

regeneration [40]. Critically, PRP also activates and recruits

local endogenous stem cells within the injury site, amplifying

their potential to differentiate into the specific cell types needed

for functional tissue repair [41]. Crucially, the efficacy of these

regenerative processes, cellular activation, differentiation, and

ECM synthesis, is profoundly enhanced by PRP’s ability to

modulate the inflammatory environment, shifting it towards a

state optimal for repair [42, 43]. PRP exerts significant

immunomodulatory actions, suppressing detrimental chronic

inflammation and actively promoting resolution and

regeneration. This anti-inflammatory activity is intrinsically

linked to creating the permissive conditions necessary for the

cellular and matrix-building activities described previously.

PRP achieves this essential immunomodulation through

several interconnected pathways. Firstly, it serves as a rich

source of potent anti-inflammatory molecules, including

interleukin-1 receptor antagonist (IL-1ra), Interleukin-4 (IL-4),

and Interleukin-10 (IL-10). IL-1ra directly inhibits the potent pro-

inflammatory cytokine IL-1β, while IL-4 and IL-10 suppress the

production of other key pro-inflammatory mediators like IL-6 and

TNF-α, simultaneously promoting anti-inflammatory signaling

cascades [42, 44]. Secondly, PRP stimulates the polarization of

macrophages away from the pro-inflammatory M1 phenotype

towards the anti-inflammatory, pro-repair M2 phenotype. These

M2 macrophages secrete high levels of TGF-β and IL-10, further

dampening inflammation, exhibit enhanced phagocytic activity to

clear cellular debris, and directly contribute to tissue remodeling

FIGURE 1
Comprehensive framework of platelet-rich plasma therapeutic applications in neural regeneration.
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[44]. Thirdly, components within PRP, notably TGF-β and

Prostaglandin E2 (PGE2), act to regulate T-cell responses. TGF-

β induces cell cycle arrest and apoptosis in T-cells, while

PGE2 downregulates essential co-stimulatory molecules and

cytokine receptors on their surface, thereby inhibiting T-cell

activation and proliferation [45]. Fourthly, PRP influences

dendritic cell (DC) function, promoting the development of

tolerogenic DCs. These specialized DCs exhibit reduced

expression of pro-inflammatory cytokines and co-stimulatory

molecules, instead fostering immune tolerance and the

generation of regulatory T-cells (Tregs) [46]. Finally, PRP

directly enhances the development, proliferation, and function

of Tregs themselves. Tregs are essential for maintaining immune

tolerance; they suppress effector T-cells and other immune cells

through mechanisms involving the release of anti-inflammatory

cytokines (IL-10, TGF-β) and direct cell contact [47].

By orchestrating this complex immunomodulation alongside

its direct regenerative effects on cells and matrix synthesis, PRP

comprehensively supports the sequential phases of wound

healing. During the initial inflammatory phase, PRP helps

resolve inflammation efficiently and promotes the formation

of granulation tissue. Subsequently, it actively drives the

proliferation and migration of key cells like fibroblasts,

endothelial cells, and keratinocytes. Finally, it supports the

remodeling phase by providing the necessary matrix

components and signals. This integrated action accelerates the

overall healing process and enhances the functional quality and

structural integrity of the regenerated tissue [48]. A schematic

overview of PRP’s cellular and molecular mechanisms is

presented in Figure 2.

The combination of surgical and
rehabilitative techniques with PRP therapy

The combination of surgical and rehabilitative techniques

with PRP therapy encompasses multiple temporal approaches,

each serving distinct therapeutic purposes. A recent

exploratory study in rabbits demonstrated that preoperative

PRP treatment of the implantation site significantly enhanced

fat graft survival, with decreased inflammation and fibrosis

and markedly improved angiogenesis compared to

control groups [49].

Building upon this preoperative foundation, the therapeutic

potential of PRP can be further maximized through its strategic

application during the surgical procedure itself. Intraoperative

PRP application refers to the planned incorporation of PRP as an

integral component of the surgical procedure. This approach is

FIGURE 2
The schematic presentation of PRP cellular and molecular therapy.
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typically applied during the final stages of surgery rather than

throughout the entire operation, representing a primary

therapeutic goal rather than an ancillary treatment. Surgeons

strategically apply platelet-rich plasma directly to the surgical site

or incorporate it into biological scaffolds immediately before

wound closure. This optimizes tissue integration and

regeneration through growth factors and bioactive substances

that stimulate neovascularization and extracellular matrix

production, ensuring maximum therapeutic benefit while the

surgical site remains accessible [50].

Postoperative PRP therapy involves administering PRP

injections into the surgical site during the recovery period to

accelerate tissue regeneration and enhance functional recovery.

This approach differs from intraoperative application as it occurs

days to weeks after the initial surgical procedure. Postoperative

PRP significantly accelerates tissue regeneration, reduces post-

FIGURE 3
Summary of factors affecting PRP therapeutic potential.
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TABLE 1 Therapeutic potential of PRP in peripheral nerve injury treatment.

PRP treatment Outcomes in PNI Species References

PRP PRP enhances locomotor recovery, spares white matter,
promotes angiogenesis and neuronal regeneration, and
modulates blood vessel size, leading to the recovery of spinal
cord injuries

Rat [15]

PRP Promoted the radial nerve in musculoskeletal disorders Human [20]

PRP-derived exosomes Promoted SC proliferation and dorsal root ganglion axon
growth
Increased the ability of MSCs to promote neural repair and
regeneration in patients with PNI.

Mouse [23, 24]

PRP gel +Collagen film Promoted facial nerve regeneration Rats [53]

PRP Recovered facial nerve injury followed by promoting vibrissae
movement, eyelid closure, and electrophysiological function

Rat [54]

PRP gel +Collagen/Chitosan composite film Promoted the proliferation of SC, nerve regeneration and
functional recovery in rats with sciatic nerve injury

Rat [55]

PRP+ Low-dose ultrashort wave therapy Improve sciatic nerve crush injury regeneration and recovery Rabbit [30]

PRP Promoted nerve regeneration through improvement of
angiogenesis and intracellular ubiquitin levels by regulating
ITGB8, ribosomal protein S27a (RSP27a) and ubiquilin 1
(UBQLN1)

Rabbit [56]

PRP + gelatin methacrylate and sodium alginate hydrogel Enhances growth factors VEGF-A and PDGF-followed by
promotion of the migration of SC and the neovascularization
of endothelial cells to prevent sciatic nerve defects and facilitate
the repairing of peripheral nerve

Rat [57]

Platelet-rich fibrin The axon regeneration of the sciatic nerve and sensory
function was improved with nerve conduit filled with platelet-
rich fibrin Repair peripheral nerve defects

Mouse [58]

PRP-derived exosomes Promoted the nerve regeneration by enhancing the
proliferation, migration, and secretion of trophic factors by SC

Rat [59]

PRP Enhanced the proliferation, secretion and migration of SCs
and the regeneration of axons in the early stage as well as
VEGF expression and improved repairing of tibial nerve
defects

Rabbit [60]

Freeze-dried PRP Increased the expression of nerve growth factor and S100B
Induced neuro-regeneration and relieved chronic orofacial
pain

Rats [61]

PRP Treatment of recurrent laryngeal nerve injury
Regeneration
Promoted the proliferation and migration of SC

Rabbit [62]

Human umbilical cord blood+ PRP Improved the spinal cord injury regeneration Rat [63, 64]

PRP + chitin Facilitate the repairing of sciatic nerve defects Rat [65]

Platelet-rich fibrin Enhanced the sciatic nerve regeneration Rat [66]

PRP Enhanced the mature SC proliferation, and microenvironment
in the small gap and promote peripheral nerve regeneration

Rabbit [67]

PRP+ adipose tissue–derived stem cells Improve recovering of sciatic nerve repairing and prevent its
defects

Rat [68]

PRP+ adipose tissue–derived stem cells Enhanced the spinal cord injury recovery and improved of
repairing central nervous system

Rat [69]

PRP + Citicoline Improved sciatic nerve injury following recovery of peripheral
nerve injury

Rat [70]

(Continued on following page)
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surgical inflammation, and promotes optimal wound healing

during the critical recovery phase. The therapy directly delivers

growth factors and cytokines to the surgical site through targeted

injections that promote angiogenesis, collagen deposition, and

cellular proliferation [51].

Integration with rehabilitation protocols represents an

advanced approach where PRP therapy is strategically

combined with physical therapy and rehabilitation

programs following surgical procedures. Physical therapists

can incorporate PRP injections as a complementary tool

within comprehensive rehabilitation programs to enhance

neuromuscular re-education, improve joint stability, and

accelerate tissue repair processes. This integrated approach

leverages PRP’s ability to enhance the healing of injured

tissues, reduce pain levels, and improve muscle strength.

The synergistic effect of combining biological enhancement

with mechanical stimulation ultimately enables a more

complete and expedited return to pre-injury functional

capacity [52].

Impact of PRP in peripheral nerve
injury recovery

The role of PRP in peripheral nerve injury recovery has been

summarized in Table 1. PRP represents a concentrated

autologous preparation derived from patient blood that

contains elevated concentrations of platelets and bioactive

growth factors essential for tissue regeneration. The

therapeutic mechanism underlying PRP’s efficacy centers on

its ability to secrete critical growth factors, including PDGF,

which promotes cellular proliferation; TGF-β, which modulates

inflammatory responses and stimulates tissue repair; and VEGF,

which promotes neovascularization to support regenerating

neural tissue. Given that PRP is autologous in nature, it

exhibits minimal risk of immunogenic reactions, establishing

it as a promising therapeutic modality for peripheral nerve injury

management [76].

Numerous preclinical and clinical studies across various

nerve types, including facial, sciatic, and median nerves, have

widely supported the positive effect of PRP on peripheral nerve

healing [30, 53, 55–57, 77–85]. In models of facial nerve injury,

experimental research showed that PRP can greatly enhance

therapeutic outcomes when combined with biocompatible

materials like chitosan, which serves as a structured scaffold

for controlled and sustained release of growth factors at the

injury site [53, 78]. Li et al. showed that PRP has neuroprotective

effects on traumatic facial nerve injuries, with notable recovery of

SC and significant axonal regeneration [54]. Likewise, studies on

sciatic nerve injury consistently indicate that autologous PRP

supports nerve regeneration by decreasing M1 macrophages and

altering the inflammatory environment [32, 79, 80, 86–89].

PRP has been shown to stimulate SC proliferation and

secretion while promoting angiogenesis and affecting

intracellular signaling pathways. Notably, PRP significantly

upregulated the expression of integrin subunit β-8 (ITGB8),

which plays a critical role in angiogenesis after nerve injury

[56]. When combined with biomaterial scaffolds such as

collagen/chitosan composite membranes or gelatin

methacrylate hydrogels, PRP has demonstrated enhanced

efficacy in promoting both functional and structural nerve

recovery [55, 81, 82].

In median nerve applications, particularly for carpal tunnel

syndrome treatment, PRP has shown superior outcomes

compared to corticosteroids in clinical trials, providing

significant pain relief and functional improvement [77, 83–85,

90–93]. Studies have demonstrated that ultrasound guided PRP

injections can provide effective treatment for up to 1 year post-

TABLE 1 (Continued) Therapeutic potential of PRP in peripheral nerve injury treatment.

PRP treatment Outcomes in PNI Species References

Leukocyte-platelet rich fibrin Suppressed proinflammatory cytokines followed by
prevention of peripheral nerve inflammation and injuries
Facilitated peripheral nerve regeneration

Rat [71]

PRP Induces nerve regeneration by promoting neurotrophic factors
and anti-inflammatory cytokines by calcium chloride
activation
Facilitated the recovery of spinal cord dorsal root repair

Rat [71]

PRP Improved regeneration and proliferation of SC Rabbit [72]

Platelet-rich fibrin Facilitated the regeneration of sciatic nerves and peripheral
nerve injury

Rat [73]

Platelet-rich fibrin Improved the regeneration of sciatic nerve
Showed positive effect on maxillofacial tissues regeneration

Rabbit [74]

PRP Promoted the healing of digital nerve crush injury
Decreased the neuropathic pain

Human [75]
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injection, with predictive factors including patient body weight,

distal motor latency, and median nerve cross-sectional

area [77, 85].

In recent years, progress in platelet research has

highlighted the significance of platelet-derived extracellular

vesicles (EVs), including exosomes, and their role in

facilitating intercellular communication [94]. A study

conducted by Yi et al. [59] isolated platelet-rich

plasma–derived exosomes (PRP-Exos) and found that they

markedly promoted SC proliferation, migration, and secretion

of trophic factors. Additionally, PRP-Exos induced notable

changes in both transcriptional and protein expression within

SCs, especially increasing the expression of genes crucial for

nerve repair. In a rat sciatic nerve crush model, the application

of ultrasound-targeted microbubble destruction (UTMD)

significantly improved the delivery of PRP-Exos to the

injury site, resulting in greater exosome accumulation

locally and enhanced regenerative and functional outcomes

compared to untreated controls [59].

Other studies have shown that PRP-Exos improve MSC

survival by reducing apoptosis, preserving stemness, and

delaying senescence. Pretreated MSCs (pExo-MSCs)

demonstrated better retention in vivo, resulting in enhanced

axonal regeneration, remyelination, and neurological recovery.

In vitro, they further encouraged SC proliferation and dorsal root

ganglion axonal extension, mainly through glial cell–derived

neurotrophic factor (GDNF) secretion and activation of the

PI3K/Akt pathway [24].

Similarly, Zhang et al. (2024) reported that PRP-Exo–treated

MSCs (MSĈPExo) enhanced SC proliferation and reduced

apoptosis after peripheral nerve injury (PNI). Conditioned

medium from MSCPExo (MSCPExo-CM) further stimulated SC

proliferation, migration, and angiogenesis. Proteomic analysis

of the MSCPExo secretome identified 440 proteins, many of which

showed strong pro-regenerative and angiogenic functions. ELISA

confirmed the enrichment of key trophic factors, and Western

blotting validated PI3K/Akt pathway activation. Collectively,

these findings highlight PRP-Exos as potent enhancers of

MSC paracrine activity and valuable modulators of

neural repair [23].

Factors affecting PRP therapy in
nerve repair

The factors affecting PRP effectiveness are detailed in Table 2

and depicted graphically in Figure 3 for enhanced clarity. The

technique used for preparation, the parameters of centrifugation,

and patient-specific characteristics such as age and health condition

can significantly influence the composition of PRP. Research

demonstrates that PRP efficacy decreases with increasing age,

with PRP derived from young donors (18–35 years) showing

significantly better therapeutic outcomes compared to PRP from

older donors (≥65 years) [124]. Studies show that growth factor

levels, including PDGF-BB, TGF-β1, IGF-1, and EGF, are

statistically higher in subjects younger than 25 years compared to

those aged 26 years or older [125]. Additionally, PRP derived from

women older than 45 years does not contain significantly higher

concentrations of bioactive components compared to younger

groups, suggesting that aging significantly affects the active

components of PRP [126]. At the cellular level, elderly patients

show decreased numbers of α-granules in platelets, which are the

main component releasing active substances, leading to decreased

platelet function [127]. Clinical evidence supports these laboratory

findings, with PRP therapy showing poor efficacy in elderly patients

(≥60 years) for conditions such as facial rejuvenation and Achilles

tendinitis treatment [124].

The therapeutic efficacy of PRP in peripheral nerve repair

demonstrates significant variability due to differences in

leukocyte content, growth factor concentrations, and platelet

density across various PRP formulations [128–130]. This

heterogeneity underscores the critical need for standardized

preparation protocols encompassing appropriate anticoagulant

selection, optimal centrifugation parameters, and consistent

extraction methodologies to ensure reproducible outcomes in

both research and clinical applications [131, 132]. Despite

encouraging results from preclinical investigations and early-

phase clinical trials, the current body of clinical evidence remains

insufficient to definitively establish PRP’s effectiveness in nerve

repair and regeneration. Existing studies frequently exhibit

methodological limitations, including inadequate sample sizes,

absence of appropriate control groups, heterogeneous patient

populations, and insufficient follow-up durations. Large-scale

randomized controlled trials employing standardized protocols

and extended observation periods are essential to establish the

safety profile, therapeutic efficacy, and optimal clinical

applications of PRP therapy in nerve regeneration [133].

Achieving adequate PRP distribution and tissue penetration

presents additional complexities, particularly in cases

involving scar tissue formation or deep-seated injuries.

Anatomical barriers, tissue density variations, and extracellular

matrix composition may impede PRP penetration into the

neuronal microenvironment, potentially limiting regenerative

efficacy. Advanced delivery systems incorporating carrier

matrices or bioengineered scaffolds may enhance PRP

distribution and retention at nerve injury sites [88]. While

PRP therapy generally demonstrates a favorable safety profile,

specific risks associated with nerve regeneration applications

include hypersensitivity reactions, iatrogenic nerve injury,

hematoma formation, and infection. Rigorous adherence to

sterile protocols, careful patient selection criteria, and

comprehensive adverse event monitoring are essential to

minimize these risks and ensure treatment safety [134].

Additionally, therapeutic accessibility remains constrained by

economic factors, particularly in regions where insurance

coverage or healthcare systems do not support the costs of
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PRP therapy. Geographic and institutional limitations further

compound healthcare disparities. Addressing these challenges

requires comprehensive strategies to reduce treatment costs,

expand reimbursement coverage, and improve therapeutic

accessibility to ensure equitable patient access to this

potentially beneficial regenerative approach [110].

Conclusion

The exploration of PRP as a treatment target for PNIs has

shown significant promise, especially when PRP is obtained

through plasmapheresis. This review emphasizes the positive

outcomes seen in both clinical and preclinical studies, where PRP

treatment has been linked to better nerve regeneration, improved

sensory and motor functions, and less pain. Preclinical studies

have provided valuable insights into how PRP promotes nerve

repair, including encouraging axonal growth and reducing scar

formation. Despite these promising results, several obstacles

remain when turning preclinical findings into clinical practice.

These include species-specific differences and the need for

thorough clinical evaluations to confirm safety and effectiveness

in humans. Standardizing PRP preparation methods and

optimizing treatment timing are essential steps to improve the

consistency and reliability of PRP therapy outcomes. Future

research should aim to better understand the molecular

TABLE 2 Factors affecting the efficacy of PRP.

Parameters affecting PRP
efficacy

Biological outcomes of PRP References

Concentration of platelet The platelets concentration in PRP can vary depending on how it is prepared, and the equipment used.
Higher platelet concentrations are generally associated with better outcomes, but there is an optimal range,
and too high concentrations may not be beneficial

[95, 96]

Contents of leukocyte PRP can be categorized as either leukocyte-rich or leukocyte-poor, depending on whether leukocytes are
present or absent. The amount of leukocytes present can impact the inflammatory response and the healing
of tissues

[97–100]

Method of activation for PRP PRP can be activated through different methods, including thrombin, calcium chloride, or exposure to
collagen. This activation subsequently triggers the release of growth factors from platelets, thereby
influencing the regenerative properties of PRP.

[101–104]

Buffy coat removal The method used to separate the buffy coat from whole blood during PRP preparation determines the purity
and composition of PRP.

[105, 106]

Time and speed utilized for centrifugation The separation of blood components and the final composition of PRP are determined by the speed and
duration of centrifugation. It is crucial to use optimal centrifugation parameters to obtain PRP with the
desired properties

[107–109]

Types of anticoagulants Anticoagulants like citrate or heparin are utilized to prevent clotting while collecting blood. The selection of
anticoagulant can impact the activation of platelets and the stability of PRP.

[43, 106, 110]

Injectable formulation PRP can be administered in either liquid or gel form, depending on the specific clinical application. The
injectable form chosen has a significant impact on the ease of administration and how PRP is distributed
within the tissues

[111–114]

Composition of growth factor The concentration and composition of growth factors, such as TGF-β, PDGF, and VEGF, can vary among
different PRP preparations. The specific growth factors released by the platelets and their concentrations play
a critical role in the regenerative and healing processes

[115–117]

Injected PRP volume The distribution, diffusion, and therapeutic effects of PRP in the target tissue can be influenced by the volume
injected

[70, 107]

Factors specific to the patient The response to PRP treatment can be affected by various factors, including age, sex, underlying health
conditions, and medications

[118–120]

Clinical hallmarks The choice of PRP preparation and administration protocol is influenced by the specific condition being
treated, such as tendonitis, osteoarthritis, or wound healing, as well as the targeted tissue
PRP therapy may be more effective for certain types of tissues, such as tendons, ligaments, and cartilage,
compared to others. Additionally, mild to moderate injuries tend to respond better to PRP than severe or
chronic conditions. Furthermore, areas with a good blood supply may exhibit enhanced healing with the use
of PRP therapy

[18, 34, 121]

Content of fibrin Fibrin, present in PRP, plays a crucial role in both clot formation and tissue healing. Certain classification
systems differentiate PRP preparations based on their fibrin content, categorizing them as either fibrin-rich
or fibrin-poor, according to their clotting characteristics and regenerative capabilities

[43, 122]

Contamination of red blood cells Contamination of red blood cells (RBCs) in PRP can significantly impact the quality and efficacy of PRP in
various therapeutic applications

[41, 123]
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mechanisms behind PRP’s therapeutic effects, refine treatment

protocols, and expand its clinical use. By tackling these challenges

and integrating insights from both human and animal studies, the

full potential of PRP as a strong option for nerve regeneration and

functional recovery in patients with PNI can be achieved.
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