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Abstract 

Acute lung injury (ALI) is a disease with an excessive inflammatory response 

triggered by activating the NF-κB signaling pathway. Our study aims to investigate 

the role of the long non-coding RNA HOTAIR in ALI-associated 

hyperinflammation, providing evidence for HOTAIR as a potential therapeutic 

target for ALI. Here, we examined the contribution of HOTAIR to LPS-induced 

lung injury using both A549 cell and murine models. LPS stimulation markedly 

increased HOTAIR expression in A549 cells, accompanied by reduced cell viability 

and elevated secretion of pro-inflammatory cytokines, including IL-1β, IL-6, and 

TNF-α. Overexpression of HOTAIR further amplified NF-κB signaling, as indicated 

by increased phosphorylation of IκBα and p65 and enhanced nuclear 

translocation of p65, whereas silencing HOTAIR effectively reversed these 

effects. In vivo, knockdown of HOTAIR significantly mitigated LPS-induced 

lung injury, reduced inflammatory cytokine production, and suppressed NF-κB 

activation in mice. Our findings reveal the contribution of HOTAIR to NF- 

κB–driven inflammatory injury in ALI, offering insight into its regulatory role 

and informing future exploration of targeted therapeutic approaches.
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Impact statement

Acute lung injury (ALI) is a life-threatening condition driven by uncontrolled 
inflammation, yet effective therapeutic targets remain limited. This study identifies the 
long non-coding RNA HOTAIR as a critical regulator of ALI progression by amplifying 
NF-κB-mediated hyperinflammation. Using both cellular and animal models, we 
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demonstrate that HOTAIR is upregulated upon LPS exposure 
and exacerbates lung injury by enhancing NF-κB activation, 
leading to excessive cytokine release (IL-1β, IL-6, and TNF-α) 
and tissue damage. Importantly, silencing HOTAIR attenuates 
inflammation and lung injury, suggesting its therapeutic 
potential. Our work advances the field by: Establishing 
HOTAIR as a novel pro-inflammatory driver in ALI, 
expanding its known roles beyond cancer and chronic 
diseases. Unveiling a direct link between HOTAIR and NF-κB 
activation in LPS-induced lung injury, providing mechanistic 
insight. Proposing HOTAIR inhibition as a strategy to mitigate 
A LI, offering a new avenue for clinical intervention. These 
findings could reshape ALI treatment paradigms by targeting 
epigenetic regulators like HOTAIR to suppress harmful 
inflammation.

Introduction

Acute lung injury (ALI) represents a life-threatening 
pulmonary disorder carrying a significant clinical burden due 
to its high fatality rates [1, 2]. Bacterial pathogens are key drivers 
of ALI pathogenesis through LPS-mediated activation of the NF- 
κB cascade, which orchestrates cytokine storms and subsequent 
pulmonary tissue destruction [3]. The NF-κB transcription factor 
complex is composed of five distinct subunits, namely NF-κB1 
(p105/p50), NF-κB2 (p100/p52), c-Rel, RelA (p65), and RelB [4]. 
NF-κB signaling operates through two major branches: the 
canonical pathway, which is rapidly activated by pro- 
inflammatory stimuli such as LPS and TNF-α and relies 
primarily on the p65/p50 heterodimer [5]; and the 
noncanonical pathway, which involves NF-κB–inducing kinase 
(NIK)–dependent processing of p100 to p52 and regulates slower 
immune and developmental processes [6].

Emerging evidence has established long non-coding RNAs 
(lncRNAs) as critical epigenetic regulators in human pathologies, 
with notable examples such as GAS5, HULC, NKILA, MALAT1, 
CASC2, SNHG5, LINC01134, HOTAIR, and PINT 
demonstrating disease-specific regulatory functions [7–16]. As 
a well-characterized lncRNA, HOTAIR (HOX transcript 
antisense intergenic RNA) has emerged as a significant 
epigenetic regulator in cancer and non-malignant disorders, 
involving positive feedback loops and compensatory harmful 
regulation mechanisms [17]. In cancer, HOTAIR contributes to 
aberrant transcription, chronic inflammation, and treatment 
resistance via NF-κB–dependent pathways [15, 18–23]. In 
addition, HOTAIR-NF-κB signaling axis was reported to be 
involved in aggravating the inflammatory environment of 
osteoarthritis [24], releasing epithelial-mesenchymal transition 
(EMT), and airway remodeling during smoke-induced COPD 
development, and promoting neuronal injury [25–27]. 
Furthermore, previous studies have shown that HOTAIR 
activates the NF-κB pathway by promoting 

p65 phosphorylation, thereby enhancing TNF-α secretion in 
LPS-stimulated cardiomyocytes from septic mice [28]. Recent 
studies also link HOTAIR to ALI, demonstrating its roles in 
regulating epithelial cell autophagy and apoptosis [29], as well as 
promoting aerobic glycolysis and inflammatory factor secretion 
through interaction with LIN28 [30]. These findings suggest that 
HOTAIR contributes to LPS-induced lung epithelial damage and 
inflammation. However, whether HOTAIR modulates NF-κB 
signaling in ALI in vivo and its broader effects on alveolar 
epithelial proliferation remain unclear.

This study investigated HOTAIR’s role in ALI by employing 
A549 cells and LPS-injured mice. Our results reveal that 
HOTAIR drives inflammatory responses via the NF-κB 
pathway and influences alveolar epithelial proliferation, 
providing new mechanistic insights and highlighting HOTAIR 
as a potential therapeutic target in ALI.

Materials and methods

Cells

A549 cells were grown in RPMI-1640 medium (#11875093, 
Gibco) supplemented with 10% FBS and 1% penicillin- 
streptomycin (#15140122, Gibco) in an incubator with 5% 
CO2 at 37 °C. To create a model of lung injury inflammation, 
A549 cells were exposed to 1 μg/mL of LPS (#L2630, Sigma- 
Aldrich) for 24 h at 37 °C, seeded into 6-well plates at a density of 
1 × 106 cells/well 24 h before transfection. Transfection was 
performed using Lipofectamine 2000 reagent (#1168027, 
Invitrogen) according to the manufacturer’s instructions. 
These cells were harvested for subsequent experiments.

A549 cells were divided into four groups: 1) HOTAIR- 
overexpression (HOTAIR-OE) group with overexpression of 
HOTAIR using HOTAIR-pcDNA 3.1 (GenePharma, Shanghai, 
China); 2) si-HOTAIR group with siRNA specifically targeting 
HOTAIR for knockdown (GenePharma, Shanghai, China); 3) 
NC group with pcDNA 3.1 empty vector; 4) si-NC group with 
siRNA negative control. HOTAIR-OE groups were treated with 
BAY 11-7082 (10 μM, HY-13453) or an equal volume of DMSO 
(as control) for 24 h.

Animals

Eight-week-old wild-type C57BL/6 mice (weighing 20–25 g) 
were maintained at the Sun Yat-sen University Laboratory 
Animal Center. All animals were cared for, and procedures 
followed the approved protocols of the Institutional Animal 
Care and Use Committee of Guangzhou First People’s 
Hospital (K-2021-141-01). An acute lung injury animal model 
was established with gradient concentrations of 5 mg/kg, 
10 mg/kg, and 20 mg/kg LPS, and 5 mg/kg was chosen to 
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establish the LPS mice model [Supplementary Figure]. Mice were 
divided into three groups: 1) Ctrl group with PBS treatment in 
mice with intratracheal injection of 2.5 nmol of siRNA siNC; 2) 
LPS group with LPS treatment in mice with intratracheal 
injection of 2.5 nmol of siRNA siNC; 3) si-HOTAIR group 
with LPS treatment in mice with intratracheal injection of 
2.5 nmol of siRNA si-HOTAIR.

After euthanasia, the right middle lobe was ligated and 
removed for protein extraction, the right lower lobe was 
collected for RNA analysis, and the right upper lobe was 
dissected for the lung wet-to-dry ratio measurement. To 
ensure proper preservation of airway and alveolar 
architecture, the trachea was then cannulated, and the 
remaining lung–heart bloc was fixed by intratracheal 
instillation of 4% paraformaldehyde (PFA). Following inflation 
fixation, the tissue was immersed in 4% PFA for 24 h, dehydrated, 
embedded in paraffin, and sectioned at 7 μm.

BALF collection and cell counting

The BALF samples were collected by flushing the lung tissues 
with 0.8 mL of pre-cooled PBS solution twice, centrifuged at 
400 g for 5 min at 4 °C, and the cell pellets were collected. The cell 
pellets were resuspended with PBS and then cytospun onto slides 
and subjected to Diff-Quik staining (#G1540, Solarbio). 
Observations were performed using an optical microscope 
(Zeiss), followed by photography.

The neutrophils, macrophages, and total cell count were 
quantified, and the ratio of neutrophils to macrophages was 
calculated. The cell supernatant was stored at −80 °C for protein 
quantification and ELISA determination.

Cell proliferation assay

Following a 48-h infection period, A549 single-cell 
suspensions were plated in 96-well formats with an initial 
seeding density of 2 × 103 cells/well and digested with trypsin 
after 24-h incubations. Each group of cells had three 
replicates. Cell proliferation was assessed using the MTS 
assay (#G3580, Promega) at 0, 24, 48, and 72 h. The OD 
absorbance at 490 nm was measured using a microplate 
absorbance reader.

RNA extraction and RT-qPCR

Total RNA isolation from cellular or tissue specimens was 
performed with RNA pure Tissue & Cell Kit (#CW0584, Cwbio), 
followed by reverse transcription of 1 μg RNA template using 
PrimeScript RT reagent (#R333, Vazyme), incubate at 50 °C for 
15 min and then briefly incubate at 85 °C for 5 s. Quantitative 

reverse transcription PCR (qRT-PCR) analyses were conducted 
on the QuantStudio platform (Applied Biosystems) using 
Vazyme SYBR Mix (#Q712), targeting HOTAIR along with 
key inflammatory mediators (IL-1β, IL-6, TNF-α) and the NF- 
κB pathway component NFKB1A (primer sequences in 
Supplementary Material). The amplification data were 
quantified using the 2−ΔΔCT method, with the housekeeping 
gene GAPDH as the normalization control.

ELISA

Protein lysates were prepared from cellular/tissue 
specimens using RIPA buffer containing phosphatase and 
protease inhibitors (#1005, #P1081, Beyotime), followed by 
quantitative protein assessment with the Thermo Scientific 
Pierce™ BCA assay system (#23225) for precise concentration 
determination. ELISA assay kit (#H0109c, #H0149c, #H6156, 
Elabscience) was used to detect the following biomarkers: The 
absorbance at 450 nm (A450) was recorded using a 
microplate reader.

Western blotting

Electrophoretic separation of protein lysates was conducted 
using SDS-PAGE, followed by transfer onto PVDF membranes 
(Merck Millipore #ISEQ00010). Membranes underwent blocking 
in 5% BSA/TBS (1h, RT) with subsequent TBST washes, then 
were probed overnight at 4 °C with phospho-specific and total 
antibodies against key NF-κB pathway components: p-IκBα 
(#340776), IκBα (#R23322), p-p65 (#310013), p65 (#380172) 
(all 1:1000, Zen-bioscience). Detection was achieved through 
2 h incubation with HRP-conjugated secondary antibodies 
(Thermo Scientific, 1:10,000). The bands were visualized using 
SuperSignal West Femto (#34094, Thermo Scientific) and 
quantified with a chemiluminescence system (Bio-Rad) 
and ImageJ.

Immunofluorescence

A549 cells were seeded onto coverslips (#801010, NEST 
Biotechnology), fixed with 4% PFA for 15 min, washed with 
PBS, and permeabilized with 0.5% Triton X-100 for 10 min. After 
blocking with 5% goat serum/0.1% Triton X-100/PBS for 1 hour, 
samples were incubated overnight at 4 °C with rabbit anti-p65 
NF-κB (1:50; #710048, Ebioscience). Cells were then incubated 
with donkey anti-rabbit Alexa Fluor 488 secondary antibody (1: 
1000; #ab150073, Abcam) for 1 hour and dyed with DAPI 
(#D9542, Sigma-Aldrich) for 5 min. Imaging was performed 
by a fluorescence microscope (magnification ×400; Zeiss 
Axio Observer 7).
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Lung Wet-to-dry ratio

The Lung Wet-to-dry ratio was determined using the right 
upper lobe. The right upper lung lobe was excised and rinsed with 
PBS, and wet weight (WW) was then determined using an 
analytical balance (accuracy: 0.1 mg). Tissues were then dried 
in a 60 °C oven for 48–72 h until completely dried (defined as <2% 
weight variation between 24-h intervals) to determine dry weight 
(DW). The wet-to-dry ratio was calculated as (WW/DW) × 100%.

H&E staining

Lung specimens underwent standardized histoprocessing with 
4% PFA immersion fixation, followed by graded ethanol 
dehydration series (70%–100%) and paraffin infiltration for 
optimal structural preservation. Samples were then sectioned 
into seven μm-thick slices, the slices were deparaffinized, 
rehydrated, stained with hematoxylin, rinsed, and counterstained 
with eosin for 1 min. After dehydration and clearing in xylene, 
slides were mounted with neutral resin. Observation using a light 
microscope (Zesis) and photographing were performed using a 
Digital Pathology Slide Scanner (KFBIO).

Histopathological assessment of lung injury was performed 
using a semi-quantitative scoring system adapted from Gustavo
et.al [31]. Lung sections were evaluated independently by two 
blinded investigators based on the following criteria: (1) alveolar 
wall thickening, (2) interstitial or intra-alveolar inflammatory cell 
infiltration, (3) alveolar edema, (4) hemorrhage, and (5) hyaline 
membrane formation. Each parameter was scored on a scale of 
0–4 (0 = absent, 1 = minimal, 2 = mild, 3 = moderate, 4 = severe). 
The total lung injury score was calculated as the sum of these 
individual components.

Statistical analysis

All statistical computations were performed using GraphPad 
Prism 9.4.0, with quantitative results expressed as mean ± SD. 
For comparisons between two groups, Student’s t-test was used. 
For multigroup comparisons, one-way ANOVA was applied, 
followed by Bonferroni post hoc adjustments. A significance 
threshold of p < 0.05 considered statistically significant for all 
experimental conditions.

Results

LPS inhibits proliferation, promotes 
inflammation, and HOTAIR expression

A549 cells were treated with LPS to examine its effects on the 
cells. Cell proliferation was inhibited at 24 h, 48 h, and 72 h after 

LPS stimulation, compared to the control group (Figure 1A). The 
levels of mRNA and proteins of pro-inflammatory cytokines 
IL1B, IL6, and TNF-α were significantly increased in response to 
LPS stimulation (Figures 1B,C). Furthermore, a notable elevation 
in the expression of HOTAIR was observed in the group treated 
with LPS (Figure 1D).

HOTAIR promotes the 
inflammatory responses

HOTAIR levels were manipulated in A549 cells, which 
were then subjected to LPS administration to investigate the 
role of HOTAIR in ALI. HOTAIR was successfully 
overexpressed in the HOTAIR OE group, while effective 
knockdown of HOTAIR was observed in the si-HOTAIR 
group (Figure 1E). Following LPS treatment, A549 cells 
overexpressing HOTAIR exhibited significantly lower 
proliferation levels than the NC group, whereas si- 
HOTAIR-transfected cells showed significantly higher 
proliferation than the si-NC group (Figure 1F). Without 
LPS stimulation, qPCR analysis showed that the mRNA 
levels of pro-inflammatory cytokines (IL-1β, IL-6, and 
TNF-α) remained unchanged in both HOTAIR- 
overexpressing and si-HOTAIR groups (Figure 1G), 
indicating that HOTAIR alone does not significantly 
activate NF-κB signaling. Under LPS stimulation, however, 
HOTAIR-overexpressing cells displayed marked 
upregulation of IL-1β, IL-6, and TNF-α, whereas these 
cytokines were significantly downregulated in si-HOTAIR 
cells at both mRNA and protein levels (Figures 1H,I). 
Notably, co-treatment with BAY 11-7082 significantly 
reversed these effects (Figure 1J), reducing the mRNA 
levels of pro-inflammatory cytokines (IL-1β, IL-6, and 
TNF-α) comparable to HOTAIR OE group. This suggests 
that HOTAIR primarily modulates NF-κB–mediated 
inflammatory responses in the presence of inflammatory 
stimuli such as LPS.

HOTAIR activates the NF-κB pathway

The NF-κB pathway plays a key role in mediating cell 
inflammatory response to injury, and HOTAIR has been 
shown to regulate the NF-κB pathway in osteoarthritis 20. To 
investigate the molecular mechanisms underlying HOTAIR 
regulation of inflammation in ALI, we examined whether 
HOTAIR regulated the NF-κB pathway in this condition. 
Upon HOTAIR overexpression, the ratios of p-IκBα/IκBα and 
p-p65/p65 were significantly increased, suggesting activation of 
the NF-κB pathway (Figures 2A,B). Consistently, upon HOTAIR 
silencing, the ratios were decreased, suggesting inactivation of the 
NF-κB pathway (Figures 2A,B). The canonical NF-κB signaling 
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cascade culminates in p65 nuclear localization. Following LPS 
stimulation, nuclear localization of p65 protein was enhanced in 
HOTAIR-overexpressing cells, and consistently, it was decreased 
in HOTAIR-silenced cells (Figures 2C,D). These results 
suggested that HOTAIR regulates the inflammation in ALI by 
positively regulating the NF-κB pathway.

HOTAIR promotes LPS-induced lung 
injury in vivo

LPS treatment significantly upregulated the expression of 
HOTAIR in a dose-dependent manner, indicating a potential 
role of HOTAIR in the inflammatory response triggered by LPS 

FIGURE 1 
LPS treatment inhibits proliferation, promotes inflammation, and HOTAIR expression in A549 cells. (A) MTS assay for cell proliferation in control 
and LPS treatment A549 cells. (B) qPCR for the relative mRNA expression level of IL1B, IL6, and TNF in control and LPS treatment A549 cells, 
normalized to GAPDH. (C) ELISA for inflammatory cytokines, including IL-1β, IL-6, and TNF-α production in control and LPS treatment A549 cells. (D) 
qPCR for the relative mRNA expression level of HOTAIR in control and LPS treatment A549 cells, normalized to GAPDH. n = 3. (E) qPCR for the 
relative mRNA expression level of HOTAIR in A549 cells after transfection with NC, HOTAIR OE, si-NC, and si-HOTAIR and treatment with/without 
LPS, normalized to GAPDH. (F) MTS assay for cell proliferation in LPS-induced A549 cells after transfection with NC and HOTAIR OE (left), as well as si- 
NC and si-HOTAIR (right). (G) qPCR for the relative mRNA expression level of IL1B, IL6, and TNF in non-LPS treatment A549 cells after transfection 
with NC, HOTAIR OE, si-NC, and si-HOTAIR, normalized to GAPDH. (H) qPCR for the relative mRNA expression level of IL1B, IL6, and TNF in LPS 
induced treatment A549 cells after transfection with NC, HOTAIR OE, si-NC, and si-HOTAIR, normalized to GAPDH. (I) ELISA for inflammatory 
cytokines production, including IL-1β, IL-6, and TNF-α, in LPS treatment A549 cells after transfection with NC, HOTAIR OE, si-NC, and si-HOTAIR. (J) 
qPCR for the relative mRNA expression level of IL1B, IL6, and TNF in LPS induced treatment A549 cells after transfection with HOTAIR OE, with or with 
out Bay 11-7082, normalized to GAPDH. n = 3. p < 0.05 (*); p < 0.01 (**); p < 0.001 (***); and p < 0.0001 (****). 
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(Suppleymentary Figure). To investigate the role of HOTAIR in 
ALI in vivo, we generated HOTAIR-knockdown mice by 
injection of siRNA si-HOTAIR and stimulated the mice with 
LPS (Figure 3A). At 24 h post-LPS stimulation, compared to the 
Ctrl group, the LPS group exhibited significant weight loss and 
increased lung wet-to-dry ratio (Figure 3B). The si-HOTAIR 
group also showed weight loss (Figure 3B). On the other hand, 
the lung wet-to-dry ratio of the si-HOTAIR group was 
significantly lower than that of the LPS group, and was 
comparable to that of the Ctrl group (Figure 3C). 
Histopathological analysis showed minimal lymphocyte and 
plasma cell infiltration without notable inflammatory response 
and intact pulmonary architecture in the Ctrl group (Figure 3D, 
left panel). In contrast, the LPS group exhibited a marked 
increase in inflammatory cell infiltration, especially 
neutrophils and macrophages, with localized inflammatory 
foci; moreover, fluid infiltration was observed in the alveoli, 
with bronchial wall swelling and obvious interstitial edema, and 

some alveolar walls became thinner or ruptured, and the integrity 
of the bronchi and alveoli was compromised (Figure 3D, middle 
panel). In the si-HOTAIR group, inflammatory cells were mainly 
concentrated in localized areas with reduced fluid accumulation 
in the alveolar cavity and mild interstitial edema, and the alveolar 
wall cells were relatively orderly arranged. The overall degree of 
inflammation and tissue damage was alleviated compared with 
the LPS group, but still more pronounced than the control group 
(Figure 3D, right panel). These results suggested that HOTAIR 
promotes LPS-induced lung injury in vivo (Figures 3D,E).

HOTAIR promotes LPS-induced 
inflammation through regulating the NF- 
κB pathway in vivo

Following LPS stimulation, the total protein levels in 
bronchoalveolar lavage fluid (BALF) of mice were elevated, 

FIGURE 2 
HOTAIR activates the NF-κB pathway by promoting the nuclear translocation of p65 in LPS-induced A549. (A) p-IκBα, IκBα, p-p65 NF-κB, and 
p65 NF-κB protein expression was detected using western blot in LPS treatment A549 cells after transfection with NC, HOTAIR OE, si-NC, and si- 
HOTAIR. (B) Ratio of p-IκBα/IκBα and p-p65 NF-κB and p-p65 NF-κB/NF-κB in LPS treatment A549 cells after transfection with NC, HOTAIR OE, si- 
NC, and si-HOTAIR. (C) Immunofluorescence (IF) for p65 NF-κB in LPS treatment A549 cells after transfection with NC, HOTAIR OE, si-NC, and 
si-HOTAIR. Scale bar, 50 µm. (D) Quantifying nuclear p65 NF-κB positive cells in LPS treatment A549 cells after transfection with NC, HOTAIR OE, si- 
NC, and si-HOTAIR. n = 3. p < 0.01 (**); p < 0.001 (***); and p < 0.0001 (****).
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which was attenuated in HOTAIR-knockdown mice 
(Figure 4A). Elevated protein content in BALF reflects 
enhanced vascular permeability and disruption of the 
alveolar–capillary barrier, a characteristic pathological 
feature of ALI. Concurrently, LPS stimulation induced 
macrophage and neutrophil accumulation in BALF. 
However, because neutrophils expanded more 
dramatically, the proportional representation of 
macrophages appeared reduced. Compared to the LPS 
group, HOTAIR knockdown showed a mild decrease in 
macrophage and neutrophil counts, consistent with an 
attenuated inflammatory response (Figures 4B,C).Further 
analysis of pro-inflammatory cytokines, including IL-1β, 
IL-6, and TNF-α, revealed that, while LPS stimulation 
markedly elevated the protein levels of these cytokines, 
HOTAIR silencing significantly attenuated this elevation 

(Figure 4D). Although no statistically significant 
differences were detected, the mRNA levels of these 
cytokines exhibited trends similar to protein levels 
(Figure 4E). Hence, the LPS-induced inflammation was 
attenuated by HOTAIR silencing.

Next, we investigated the molecular mechanisms by examining 
the NF-κB signaling pathway in vivo. In the mouse lung, LPS 
stimulation upregulated Nfkb1, a core transcriptional target of the 
NF-κB pathway, but this upregulation was diminished by 
HOTAIR silencing (Figure 4F). Furthermore, LPS treatment 
elevated the ratio of p-p65/p65 and p-IκBα/IκBα, suggesting 
activation of NF-κB signaling (Figure 4G). Importantly, 
HOTAIR silencing significantly attenuated the elevation in the 
ratio of p-p65/p65 and p-IκBα/IκBα, suggesting a compromised 
NF-κB pathway (Figure 4G). Therefore, LPS-induced activation in 
the NF-κB pathway was impaired by HOTAIR silencing in vivo.

FIGURE 3 
HOTAIR promotes LPS-induced ALI in vivo. (A) Mice were oropharyngeally administered LPS to simulate ALI, with PBS as the control. si-HOTAIR 
was co-administered with LPS/PBS simultaneously. After 24 h, mice were euthanized, and lung tissues were harvested. The mice were grouped into 
PBS + si-NC (Ctrl), LPS + si-NC (LPS), and LPS + si-HOTAIR. (B) The body weight (g) at 0 and 24 h of mice in the Ctrl, LPS, and LPS + siHOTAIR groups. 
(C) The lung wet-to-dry ratio (lung W/D) of mice in the Ctrl, LPS, and LPS + siHOTAIR groups. (D) Representative histology images of H&E 
staining from mice in the Ctrl, LPS, and LPS + siHOTAIR groups. Scale bars, 20 µm. Arrowheads: Neutrophils located within the alveolar space or 
interstitium, indicate alveolar and interstitial inflammation. Box area: alveolar wall thickening and edema. Asterisks: proteinaceous debris filling the 
airspaces. (E) Semi-quantification of lung injury score in the Ctrl, LPS, and LPS + siHOTAIR groups. n = 3 per group; scale bars(black), 50 µm. Ns, not 
significant; p < 0.05 (*); and p < 0.0001 (****).
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Discussion

Our study confirmed that HOTAIR activated the NF-κB 
pathway through key proteins, including p50, p-p65/p65, and 
p-IκBα/IκBα, in both in vitro and in vivo models of LPS-induced 
ALI. This activation leads to the massive recruitment of 
inflammatory cells, including macrophages and neutrophils, 
triggers the secretion of pro-inflammatory cytokines, and 
results in pulmonary tissue damage characterized by 
inflammatory cell infiltration, tissue edema, and other 
pathological manifestations.

Serving as the primary driver of inflammatory 
pathogenesis in LPS-challenged ALI, the NF-κB cascade 

executes its regulatory dominance through a canonical 
molecular sequence: IκBα phosphorylation-triggered 
proteolytic breakdown liberates sequestered p65 subunits 
for nuclear accumulation, thereby activating transcription 
of pro-inflammatory mediators [4]. We observed that 
HOTAIR knockdown could reduce the accumulation of 
p-IκB and p-p65 induced by LPS stimulation and prevent 
p65 nuclear translocation, suggesting that HOTAIR 
knockdown could attenuate severe lung inflammation 
caused by LPS. Excessive lung inflammation with 
abnormal macrophage activation is known to be 
characteristic of ALI. Studies have demonstrated that 
alveolar macrophages (AMs) increase substantially in 

FIGURE 4 
HOTAIR promotes LPS-induced inflammation and promotes LPS-induced inflammation in vivo. (A) Total protein levels in bronchoalveolar 
lavage fluid (BALF) from mice after LPS stimulation. n = 3. (B) BALF cells from mice in the Ctrl, LPS, and LPS + siHOTAIR groups were cytospun on slides 
and subjected to Diff-Quik staining. Macrophages and neutrophils were identified based on morphological criteria. Representative images of Diff- 
Quik staining, Short arrow, macrophage; long arrow, neutrophil. Scale bar, 50 µm. (C) Quantification of macrophages and neutrophils as a 
percentage of total cells in the BALF of mice in the Ctrl, LPS, and LPS + siHOTAIR groups. (D) qPCR for the relative mRNA expression level of Il1b, Il6, 
and Tnf from mice in the Ctrl, LPS, and LPS + siHOTAIR groups, normalized to GAPDH. (E) qPCR for the relative mRNA expression level of Nfkb1 from 
mice in the Ctrl, LPS, and LPS + siHOTAIR groups, normalized to GAPDH. (F) p-IκBα, IκBα, p-p65 NF-κB, and p65 NF-κB protein expression was 
detected using western blot from mice in the Ctrl, LPS, and LPS + siHOTAIR groups. (G) Ratio of p-IκBα/IκBα and p-p65 NF-κB/NF-κB from mice in the 
Ctrl, LPS, and LPS + siHOTAIR groups. n = 3 per group; p < 0.05 (*); p < 0.01 (**); p < 0.001 (***); and p < 0.0001 (****).
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BALF following lung injury or inflammation [32, 33]. 
Interferon drives AM differentiation into 
M1 macrophages in LPS-induced ALI through recognition 
receptors such as TLRs, secreting cytokines such as IL-1β, IL- 
6, IL-18, IL-12, and iNOS, which contribute to the clearance 
of bacteria and endotoxins, promote the recruitment and 
infiltration of neutrophils and M1 AM, thereby exacerbating 
the inflammatory response [34]. Previous studies indicate 
that HOTAIR regulates NF-κB activation by modulating 
IκBα degradation in LPS-stimulated macrophages [35]. 
Whole-transcriptome RNA sequencing analysis identified 
a series of long non-coding RNAs, including HOTAIR, 
with potential regulatory functions in cytokine expression 
and inflammatory responses in macrophages and revealed 
that HOTAIR exhibits an expression pattern similar to that 
of pro-inflammatory cytokines following LPS stimulation 
[36]. In our study, we found that HOTAIR knockdown 
significantly reduced the expression of macrophages and 
neutrophils, accompanied by significant reductions in the 
expression levels of TNF-α, IL-1β, and IL-6, suggesting that 
HOTAIR knockdown can effectively inhibit the recruitment 
of macrophages and neutrophils, reducing the expression of 
pro-inflammatory factors. However, the effect of HOTAIR 
on macrophage polarization needs to be further confirmed.

ALI is characterized not only by inflammatory cell 
infiltration but also by epithelial barrier dysfunction. Alveolar 
type 1 (AT1) cells, a key part of the alveolar-capillary barrier, 
cover >95% of the gas exchange surface [37]. AT1 cells contain 
E-NaC, responsible for the bulk of transepithelial Na(+) 
transport. They may be interfered with under hypoxia or 
inflammation, triggering fluid retention within the alveolar 
space and a poor prognosis [38, 39]. Our findings 
demonstrate that HOTAIR can reverse severe damage to 
alveolar epithelial cells in LPS-induced ALI in mice, reducing 
the severity of pulmonary edema, though the direct impact on 
AT1/AT2 regeneration requires further validation using primary 
cell cultures or organoid models.

Alveolar type II (AT2) cells exhibit stem-like properties, 
enabling self-renewal, mobilization, and transdifferentiation 
into AT1 lineages via an epithelial regeneration program 
reconstructing alveolar architecture [40]. Our findings 
demonstrate that HOTAIR knockdown enhances the 
proliferation of A549 cells in a time-dependent manner, 
suggesting its potential role in promoting alveolar epithelial 
regeneration and facilitating lung tissue repair. The main 
signaling pathways that may promote the proliferation and 
differentiation of AT2 cells include the Wnt/β-catenin 
pathway and the YAP/TAZ pathway [41]. The Wnt/β-catenin 
and YAP/TAZ signaling axes emerge as core regulators of 
AT2 cell fate determination, orchestrating alveolar 
regeneration through progenitor cell activation. Notably, 
HOTAIR exhibits pan-pathological regulatory capacities, 
driving oncogenic phenotypes in epithelial malignancies 

(including esophageal/gastric/colorectal carcinomas), 
modulating vascular calcification in cardiovascular pathologies, 
governing cartilage homeostasis in degenerative joint diseases, 
and rewiring placental signaling cascades in hypertensive 
gestational disorders—predominantly via Wnt/β-catenin- 
dependent mechanisms [42–48]. Based on these findings, we 
hypothesize that HOTAIR may mediate the proliferation of 
AT2 cells in ALI via the Wnt/β-catenin signaling pathway, 
which requires further confirmation.

Taken together, our findings reveal that HOTAIR 
amplifies acute inflammatory responses and worsens lung 
injury largely through NF-κB–dependent mechanisms. 
HOTAIR silencing mitigated cytokine production, 
inflammatory cell infiltration, vascular leakage, and tissue 
destruction, highlighting its potential as a therapeutic target 
for modulating dysregulated inflammation in ALI. However, 
it should be noted that the A549 cell system and the single-hit 
LPS mouse model mainly reflect endotoxin-induced acute 
injury and do not fully reproduce the clinical heterogeneity of 
ALI/ARDS, which may arise from bacterial pneumonia, 
sepsis, aspiration, trauma, or mixed etiologies. Future 
studies employing clinically relevant models, patient- 
derived cells, or translational cohorts will be crucial to 
validate our observations and to further elucidate the 
therapeutic potential of targeting HOTAIR in diverse ALI/ 
ARDS settings.
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