Original Research
14 January 2026
10.3389/ebm.2025.10776

Experimental
Biology and
Medicine

‘ @ Check for updates

OPEN ACCESS

Ling-Jun Zhu,
lingjun__zhu@163.com

Youlong Zhu,
zhuyoulong1987@126.com

These authors have contributed equally
to this work

29 July 2025
06 December 2025
17 December 2025
14 January 2026

Kong F, Feng J, Shan H, Zhu Y and
Zhu L-J (2026) Machine learning-based
comprehensive analysis of m6A RNA
methylation regulators in colorectal
cancer: implications for prognosis,
immune microenvironment, and
immunotherapy response.

Exp. Biol. Med. 250:10776.

doi: 10.3389/ebm.2025.10776

© 2026 Kong, Feng, Shan, Zhu and Zhu.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Experimental Biology and Medicine

Machine learning-based
comprehensive analysis of m6A
RNA methylation regulators in
colorectal cancer: implications
for prognosis, immune
microenvironment, and
Immunotherapy response

Feifei Kong?!, Jiawei Feng?*', Haixia Shan?, Youlong Zhu** and
Ling-Jun Zhu'*

'Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
2Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,
China, *Department of Thyroid Surgery, The Third Affiliated Hospital of Soochow University,
Changzhou First People’s Hospital, Changzhou, Jiangsu, China, *Department of Gastrointestinal
Surgery, Southeast University Affiliated Xuzhou Central Hospital, Xuzhou, Jiangsu, China

Abstract

N6-methyladenosine (m6A) RNA methylation regulators have been implicated
in colorectal cancer (CRC) progression. However, systematic evaluation using
multiple machine learning approaches for prognostic prediction remains
limited. This study aimed to develop and validate machine learning models
for CRC prognosis based on m6A regulators and assess their potential for
immunotherapy response prediction. We analyzed 1,047 CRC patients from
TCGA and GEO databases (70% training, 30% validation). Twenty machine
learning algorithms were systematically evaluated, with LASSO regression
selecting optimal features from 27 m6A regulators. SHAP analysis provided
model interpretability. Immune microenvironment characterization and
immunotherapy response prediction were performed using established
computational methods. LASSO regression selected eight m6A regulators
(IGF2BP2, METTL3, HNRNPA2B1, METTL14, YTHDF2, VIRMA, FTO, ALKBH5)
for model construction. Among 20 algorithms tested, Random Forest
achieved optimal performance (training AUC = 0.895, validation AUC =
0.847). SHAP analysis identified IGF2BP2 (mean |SHAP| = 0.42) and METTL3
(mean |SHAP| = 0.36) as primary contributors to risk prediction. Risk
stratification showed significant survival differences (HR = 2.41, 95% CI:
173-3.36, p < 0.001). Low-risk patients demonstrated enhanced immune
infiltration with higher CD8* T cells (17.8% vs. 10.2%, p < 0.001) and better
predicted immunotherapy response rates (36.5% vs. 20.3%, p = 0.006). Our
systematic machine learning analysis demonstrates that m6A regulators can
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effectively predict CRC prognosis and immunotherapy response. The eight-
gene signature provides a practical tool for clinical risk assessment and
treatment decision-making.
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Impact statement

This study addresses the need for reliable prognostic tools in
colorectal cancer by systematically evaluating machine learning
approaches for m6A-based risk stratification. While m6A
modifications are increasingly recognized in cancer biology,
their clinical application remains limited by methodological
inconsistencies. We advance the field by providing the first
comprehensive comparison of 20 ML algorithms for m6A-
based CRC prognosis, establishing a standardized framework
for future studies. Our integration of SHAP analysis addresses
the critical barrier of model interpretability in clinical settings.
The resulting 8-gene signature demonstrates potential utility for
patient  stratification and  preliminary  evidence for
immunotherapy response prediction. This work provides the
research community with a validated methodology for
developing m6A-based biomarkers and offers clinicians a
potential tool for risk assessment. The findings contribute to
the growing understanding of m6A’s role in CRC progression
and immune regulation, supporting further investigation into

epigenetic-based therapeutic strategies.

Introduction

Colorectal cancer (CRC) remains the third most common
malignancy worldwide, with over 1.9 million new cases and more
than 900,000 deaths annually reported in 2024 [1]. Despite
significant advances in surgical techniques, chemotherapy, and
targeted therapies, the 5-year survival rate for metastatic CRC
remains approximately 14%, highlighting the urgent need for
improved prognostic tools and personalized treatment strategies
[2]. CRC’s diverse molecular subtypes and treatment responses
require sophisticated predictive models to capture this complexity.

N6-methyladenosine (m6A) represents the most abundant
of mRNAs,
accounting for approximately 0.1-0.4% of all adenosines in
cellular mRNA [3].
various aspects of RNA metabolism, including stability,

internal chemical modification eukaryotic

This reversible modification regulates

translation efficiency, nuclear export, and localization [4]. The
m6A modification is dynamically regulated by three categories of
proteins: “writers” (methyltransferases such as METTL3,
METTL14, WTAP), “readers” (binding proteins including
YTHDF1/2/3, IGF2BP1/2/3, HNRNPC), and
(demethylases including FTO and ALKBH5) [5].

« »
erasers
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m6A
initiation,

that

in cancer

Accumulating  evidence  demonstrates

dysregulation is causally involved
progression, metastasis, and therapeutic resistance [6, 7]. In
CRC specifically, recent mechanistic studies have elucidated
the pathogenic roles of m6A regulators. Wang et al
demonstrated that HES1 promotes aerobic glycolysis through
IGF2BP2-mediated GLUT1 m6A modification, driving CRC
progression via m6A-dependent metabolic reprogramming
[8]. Zhou et al. revealed that METTL3-mediated m6A
modification promotes metastasis through REGla stabilization
and Wnt/p-catenin pathway activation, establishing a direct link
between epigenetic modification and tumor progression [9].
Most recently, Qiao et al. showed that FTO demethylase
targeting induces ferroptotic cell death through SLC7A11/
GPX4 downregulation, highlighting therapeutic vulnerabilities
[10]. METTL3 overexpression has been shown to promote CRC
cell proliferation and metastasis through multiple mechanisms,
including JAK1/STAT3 signaling activation and STC2 axis
regulation [11, 12]. Conversely, enhanced m6A modification
through demethylase inhibition has been associated with
increased chemosensitivity and ferroptosis induction in CRC
cells [13]. However, the comprehensive prognostic value of m6A
regulators and their relationship with the tumor immune
microenvironment in CRC remains incompletely understood.

Machine learning has transformed biomedical research and
precision oncology by analyzing complex datasets to identify
[14].  Unlike
statistical methods, machine learning algorithms can capture

patterns and make predictions traditional
non-linear relationships and complex interactions between
variables, making them suitable for analyzing the intricate
regulatory networks of me6A modifications. However, the
“black box” nature of complex machine learning models poses
a significant barrier to clinical adoption, as physicians require
to make
SHapley Additive exPlanations

transparent, interpretable predictions informed

[15].

(SHAP), a unified framework based on cooperative game

treatment decisions

theory, has emerged as widely adopted method for model
interpretation by quantifying each feature’s contribution to
individual predictions [16]. SHAP analysis has demonstrated
robust performance across diverse domains including
transportation systems, autonomous vehicle security [17],
maritime risk assessment [18], and critically, biomedical
applications. In healthcare, SHAP has been successfully applied
to predict sepsis outcomes [19], interpret deep learning models in

radiology, and identify key genetic drivers in cancer prognosis.
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The method’s model-agnostic nature and consistency with
human intuition make it particularly valuable for translating
complex computational models into clinically actionable insights.

Previous studies have primarily focused on individual m6A
regulators or utilized limited machine learning approaches for
CRC prognosis prediction. To our knowledge, no study has
comprehensively evaluated 20 different machine learning
algorithms for m6A-based prognostic modeling in CRC, nor
has any study systematically investigated the relationship
between m6A-based risk stratification and immunotherapy
response prediction.

In this study, we aimed to: (1) develop and validate a
comprehensive  computational ~ framework  incorporating
20 machine learning algorithms for méA-based CRC prognosis
prediction using m6A regulators; (2) identify key m6A genes
contributing to prognosis using LASSO feature selection; (3)
provide model interpretability through SHAP analysis; (4)
the m6A-based

stratification and immune microenvironment characteristics;

investigate relationship ~ between risk
and (5) evaluate the predictive value for immunotherapy
response using established computational biomarkers. This
work provides a hypothesis-generating framework to guide
future experimental validation and clinical trials. Our findings
provide a robust framework for personalized risk assessment and
treatment selection in CRC patients. The overall study design and

analytical workflow are illustrated in Figure 1.

Materials and methods
Study design and data sources

This retrospective study followed the Transparent Reporting
of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) guidelines. We utilized publicly available
gene expression and clinical data from The Cancer Genome Atlas
(TCGA) COAD/READ cohorts and Gene Expression Omnibus
(GEO) datasets (GSE39582).

Data accessibility

TCGA COAD:'
TCGA READ:?
GEO GSE39582:°
IMvigor210:*

https://portal.gdc.cancer.gov/projects/TCGA-COAD
https://portal.gdc.cancer.gov/projects/TCGA-READ
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582

A W NP

http://research-pub.gene.com/IMvigor210CoreBiologies/
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The combined dataset comprised 1,047 CRC patients with
complete gene expression profiles and clinical follow-up data,
representing one of the largest cohorts utilized for m6A-based
prognostic modeling in CRC. This sample size substantially
exceeds the minimum requirements for stable machine
learning model development and provides adequate statistical
power for our analyses.

The dataset was divided into training (n = 733, 70%) and
314, 30%) cohorts using stratified random
sampling to maintain balanced outcome distribution. Data
from TCGA COAD/READ and GEO dataset GSE39582 were
first combined and then randomly split, with the training cohort

validation (n =

used for model development, feature selection, and

hyperparameter optimization via 5-fold cross-validation, while
the validation cohort served as an independent holdout set for
The
criteria and screening process are detailed in Figure 2. All data

unbiased performance evaluation. inclusion/exclusion
were obtained from public repositories with appropriate ethical
approvals from the original studies, and this secondary analysis
was exempt from additional institutional review board approval.

m6A regulators and data preprocessing

We identified 27 m6A regulators through systematic literature
review and functional annotation databases, comprising 8 writers
(METTL3, METTL14, WTAP, VIRMA, RBMI15 RBMI5B,
7ZC3H13, ZCCHC4), 4 erasers (FTO, ALKBH5, CBLLI,
ELAVL1), and 15 readers (YTHDCI, YTHDC2, YTHDF1-3,
HNRNPC, EMR1, LRPPRC, HNRNPA2B1, IGFBP1-3, IGF2BP1-3).

Gene expression data underwent sequential preprocessing:
the
preprocessCore R package, and Z-score standardization within

log2 transformation, quantile normalization using
each dataset. Multi-source data integration employed Combat
batch correction (sva R package version 3.42.0). Quality control
removed genes with >20% missing values, followed by k-nearest
neighbors imputation (k = 5) using the VIM R package. Clinical
variables included age at diagnosis, gender, tumor stage (AJCC
8th edition), tumor location, microsatellite instability status, and

survival outcomes (overall survival time and vital status).

Feature selection and model development

LASSO regression with 10-fold cross-validation identified
prognostically relevant m6A regulators using the glmnet R
package (version 4.1-4). The optimal lambda parameter was
selected using the one standard error rule (lambda.lse) with
random seed set to 123 for reproducibility. Twenty machine
learning algorithms were implemented in Python 3.8 using
scikit-learn  (version 1.0.2), XGBoost (version 1.6.1),
LightGBM (version 3.3.2), and CatBoost (version 1.0.6).
Hyperparameter optimization employed 5-fold stratified cross-
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Data Sources

TCGA-COAD/READ GSE39582

Step 1: Data Preprocessing & Quality Control

|4—

Batch Correction
ComBat (sva v3.42.0)

Normalization
Log2—Quantile—~Z-score

Step 2: LASSO Feature Selection (10-fold CV)

8 Selected m6A Regulators
t Risk: IGF2BP2, METTL3, HNRNPA2B1, METTL14, YTHDF2, VIRMA
| Risk: FTO, ALKBH5

|4—

Step 3: 20 Machine Learning Algorithms Comparison
Tree-based (6) Linear (5) Neural (4) Ensemble (5) % Best: RF
RF, XGBoost, GBM... LR, SVM, Ridge... MLP, KNN... Stacking, Voting... Val AUC = 0.847

Step 4: Survival Analysis Step 5: SHAP Interpretation

IGF2BP2: [SHAP| = 0.42
METTL3: |[SHAP| = 0.36

Time-ROC: 1yr 0.834 | 3yr 0.847 | 5yr 0.851
HR =2.41 (95%Cl: 1.73-3.36)

Step 6: Inmune Infiltration Analysis (5 Methods)
MCP-counter

|4—

CIBERSORT xCell

|4—

Step 7: External Cross-Cancer Validation

AUC
0.55

IMvigor210
Bladder Cancer Cohort n=348

|4—

Step 8: Inmunotherapy Response Prediction
TMB/MSI

TIDE Score IPS

Key Findings & Clinical Implications

|4—

8-Gene Signature
Writers + Readers + Erasers

Prognostic Value
Val AUC=0.847, HR=2.41

Legend: . Data Input . Preprocessing . Feature Selection . ML Modeling . Evaluation . Immune . Immunotherapy . Results

FIGURE 1

Comprehensive study workflow and analytical framework. The flowchart illustrates the complete analytical pipeline from data acquisition
through clinical translation. (1) multi-cohort data acquisition (TCGA, GEO, validation cohorts); (2) data preprocessing and quality control; (3) feature
selection via LASSO (27—8 m6A regulators); (4) machine learning model development with 20 algorithms; (5) model interpretation using SHAP
analysis; (6) comprehensive validation across survival, immune microenvironment, and therapeutic response dimensions; (7) external validation

in independent immunotherapy cohorts; and (8) development of clinical translation tools.

4

v

27 m6A Regulators

Readers (15)
IGF2BP1-3, YTHDF1-3...

Writers (8)
METTL3, METTL14...

Erasers (4)
FTO, ALKBHS...

Final Cohort (n=1,047 patients)
n=733 (Training, 70%) n=314 (Validation, 30%)

Quality Control
>20% missing—~KNN(k=5)

Risk Stratification

Low-risk: n=537 (51.3%)
High-risk: n=510 (48.7%)

TIMER

ESTIMATE

Survival
HR=1.08,p=0.738

Response
22.4% vs 16.7%, p=0.224

T cell GEP

Checkpoints

Immune Differences
CD8+T: 17.8% vs 10.2%

Immunotherapy
Low-risk: 36.5% response

validation with grid search (random_state = 42). Class imbalance
was addressed using SMOTE from the imbalanced-learn package
(version 0.8.1) with random_state = 42.

Model evaluation and interpretability

Model performance was assessed using AUC-ROC as the

primary metric, complemented by AUC-PR, accuracy,

Experimental Biology and Medicine

sensitivity, specificity, precision, Fl-score, and Matthews
correlation coefficient calculated using scikit-learn metrics.
Model calibration was evaluated using Hosmer-Lemeshow test
(scipy.stats) and calibration plots.

We selected SHAP (SHapley Additive exPlanations) as our
primary interpretability framework based on several key
advantages. First, SHAP is grounded in cooperative game
solid mathematical foundations,

theory  with uniquely

satisfying  three desirable properties: local accuracy,
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Study Flowchart

v
Exclusion Criteria

* Missing survival data (n=234)
¢ Incomplete gene expression (n=156)
* Follow-up < 30 days (n=86)

Total Excluded: 476

Final Cohort
n = 1,047

FIGURE 2

Study design and patient flow diagram. Flowchart showing patient selection from TCGA COAD/READ and GEO (GSE39582) databases. Of
1,523 initially screened patients, 476 were excluded due to missing survival data (n = 234), incomplete gene expression (n = 156), or follow-
up <30 days (n = 86). The final cohort (n = 1,047) was randomly divided into training (n = 733, 70%) and validation (n = 314, 30%) sets.

missingness, and consistency [15, 16]. Second, SHAP provides and KernelExplainer for others, generating feature importance
both individual-level explanations and global interpretability rankings, waterfall plots, and interaction analyses for the
through aggregated SHAP values, which is critical for optimal model.

personalized  medicine.  Third, TreeExplainer  enables

computationally efficient calculation of exact SHAP values for

tree-based models in polynomial time, making it feasible for Risk stratification and survival analysis
clinical deployment. Finally, SHAP has been extensively

validated in healthcare applications and demonstrates high Risk scores were calculated as weighted linear combinations
physician acceptance due to its alignment with clinical of selected m6A regulators using LASSO coefficients: Risk
reasoning patterns. Score = Y (B; x Gene;). Optimal cutoffs were determined via

SHAP framework (version 0.40.0) provided model maximally selected rank statistics using the maxstat R package

interpretability through TreeExplainer for tree-based models with minprop = 0.1 and maxprop = 0.9. Survival analysis

Published by Frontiers
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employed Kaplan-Meier curves with log-rank tests (survival R
package), Cox proportional hazards regression (coxph function),
time-dependent ROC analysis using the timeROC R package for
1-, 3-, and 5-year predictions, concordance index (Harrell’s
C-index), and

(survRM2 R package).

restricted mean survival time

Immune microenvironment
characterization

Tumor immune microenvironment was characterized using
established algorithms: CIBERSORT (22 immune cell types) with
LM22 signature matrix and 1,000 permutations, ESTIMATE
algorithm for immune and stromal scores, MCP-counter for
10 immune and stromal populations, quanTIseq for
immunotherapy-relevant cell types, and EPIC for immune and
cancer cell fraction estimation. All analyses were performed
using respective R packages with default parameters. Immune
checkpoint genes (PDCD1, CD274, CTLA4, LAG3, HAVCR2,
TIGIT) expression levels were extracted and log2-transformed.
Immune phenotypes were classified as immune-inflamed (CD8*
T cells > median and immune score > median), immune-
excluded (moderate immune infiltration), or immune-desert
(both CD8* T cells and immune score < median).

Immunotherapy response prediction

Immunotherapy response potential was evaluated using
established computational methods. Tumor mutational burden
(TMB) was calculated as the total number of nonsynonymous
mutations per megabase from somatic mutation data.
Microsatellite instability (MSI) status was determined using
MSIsensor algorithm with default parameters (>3.5 classified as
MSI-high). Neoantigen load was predicted using NetMHCpan
4.0 for HLA class I binding prediction with binding affinity
threshold <500 nM. TIDE score was calculated using the TIDE
web portal’. Immunophenoscore (IPS) was calculated based on
four categories of genes (effector cells, immunosuppressive cells,
MHC molecules, and checkpoints) using established methodology.
T cell-inflamed gene expression profile (GEP) was calculated using
the 18-gene signature with weighted sum approach.

Cross-cancer validation

To evaluate the generalizability of our m6A risk model across
different cancer types, we performed an independent cross-

5 http://tide.dfci.harvard.edu/
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cancer validation using the IMvigor210 bladder cancer cohort.
The IMvigor210 dataset comprises 348 patients with metastatic
urothelial carcinoma who received atezolizumab (anti-PD-L1)
immunotherapy, with available gene expression data, survival
outcomes, and treatment response information. Gene expression
data were log2-transformed and Z-score normalized. The eight
m6A regulators from our CRC-derived model were mapped to
the bladder cancer expression matrix. Risk scores were calculated
using the fixed LASSO coefficients derived from the CRC
training cohort, without any re-training. Patients were
stratified into high-risk and low-risk groups based on the

median risk score.

Statistical analysis

All statistical analyses were performed using R (version 4.2.0)
and Python (version 3.8). Continuous variables were compared
using Student’s t-test or Mann-Whitney U test based on
normality assessed by Shapiro-Wilk test. Categorical variables
were compared using chi-square test or Fisher’s exact test.
Survival differences were assessed using log-rank test.
Statistical significance was set at P < 0.05. Multiple testing
correction was applied using Benjamini-Hochberg false
discovery rate when appropriate. All computational analyses
were performed with reproducible seeds to ensure result
reproducibility.

Complete analysis code, detailed parameter settings, software
environment specifications, and step-by-step  workflow
documentation are provided in the Supplementary Material
(Supplementary Material S1, Supplementary Tables S1, S2).
All analyses were performed with random seed = 42 to ensure
reproducibility.

Results
Baseline characteristics

The study cohort comprised 1,047 CRC patients with a median
age of 66 years [interquartile range (IQR): 57-74 years]. The training
cohort (n = 733) included 392 males (53.5%) and 341 females
(46.5%), while the validation cohort (n = 314) consisted of 171 males
(54.5%) and 143 females (45.5%). Baseline characteristics were well-
balanced between cohorts (Table 1).

Feature selection of m6A regulators for
prognostic model construction

LASSO regression with 10-fold cross-validation was applied
to identify prognostically relevant m6A regulators from the
initial 27-gene panel. The optimal penalty parameter (\* =

Published by Frontiers
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TABLE 1 Baseline characteristics of study cohorts.

10.3389/ebm.2025.10776

Characteristic Training Set (n = 733) Validation Set (n = 314) P-value
Age, median (IQR) 66 (57-74) 67 (58-75) 0.542
Gender, n (%) 0.812
Male 392 (53.5%) 171 (54.5%)
Female 341 (46.5%) 143 (45.5%)
TNM Stage, n (%) 0.753
Stage T 127 (17.3%) 52 (16.6%)
Stage II 276 (37.7%) 115 (36.6%)
Stage III 243 (33.2%) 108 (34.4%)
Stage TV 87 (11.9%) 39 (12.4%)
Tumor Location, n (%) 0.834
Right colon 284 (38.7%) 125 (39.8%)
Left colon 271 (37.0%) 112 (35.7%)
Rectum 178 (24.3%) 77 (24.5%)
MSI Status, n (%) 0.689
MSI-H 89 (12.1%) 41 (13.1%)
MSS/MSI-L 644 (87.9%) 273 (86.9%)
Adjuvant Chemotherapy, n (%) 423 (57.7%) 186 (59.2%) 0.674
Death Events, n (%) 200 (27.3%) 86 (27.4%) 0.973
Follow-up Time, median (IQR), months 32.5 (18.2-54.3) 31.8 (17.5-53.6) 0.721

0.0342) was determined using the minimum cross-validation
error plus one standard error criterion (Figures 3A,B).

Eight m6A regulators were selected for prognostic model
construction (Figure 3C). Six genes showed positive coefficients,
indicating adverse prognostic associations: IGF2BP2 (0.412),
METTL3 (0.356), HNRNPA2B1 (0.298), METTL14 (0.245),
YTHDF2 (0.189), and VIRMA (0.167). Two genes exhibited
negative coefficients, suggesting protective effects: FTO
(—0.284) and ALKBHS5 (-0.156).

The selected regulators encompassed all three functional
categories of m6A machinery: writers (METTL3, METTLI4,
VIRMA), readers (IGF2BP2, HNRNPA2B1, YTHDEF2), and
erasers (FTO, ALKBH5), indicating comprehensive representation
of the m6A regulatory system in prognostic prediction.

Machine learning model performance
evaluation

Twenty machine learning algorithms were systematically
evaluated using the eight-gene m6A signature for prognostic
prediction. ROC curve analysis demonstrated that most models
achieved satisfactory predictive performance, with distinct
performance  tiers emerging across the algorithmic
spectrum (Figure 4A).

Performance stratification revealed that 2 models achieved
excellent performance (AUC >0.84), 7 models demonstrated

good performance (AUC 0.80-0.84), 6 models showed fair
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performance (AUC 0.75-0.80), and 5 models exhibited poor
performance (AUC <0.75) (Figure 4B).

Among all evaluated algorithms, Random Forest (RF)
demonstrated superior overall performance with the highest
AUC of 0.887 (training) and 0.857 (validation), followed by
XGBoost (XGB, AUC = 0.885/0.841) and Support Vector
Machine (SVM, AUC = 0.874/0.851) (Figure 4C). The RF
model exhibited excellent calibration (Hosmer-Lemeshow p =
0.342) and maintained robust performance across multiple
evaluation metrics.

Comprehensive performance assessment using radar chart
analysis confirmed RF’s superiority across key metrics including
AUC, accuracy, F1 score, sensitivity, and specificity, with XGB
and SVM showing comparable but slightly inferior performance
profiles (Figure 4D). Based on these results, the Random Forest
model was selected as the optimal algorithm for subsequent
development validation

prognostic model and

(Table 2, Figure 4).

SHAP analysis reveals key feature
contributions to risk prediction

To understand which m6A regulators drove these
predictions,
individual feature contributions. SHAP analysis identified
distinct contribution patterns of m6A regulators to risk
prediction (Figure 5A). IGF2BP2 emerged as the most

we performed SHAP analysis to quantify

Published by Frontiers
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FIGURE 3

Feature selection of m6A regulators using LASSO regression. (A) LASSO coefficient paths for 27 m6A regulators. The optimal \* = 0.0342 is
indicated by the vertical dashed line. (B) Cross-validation error plot with minimum error and one standard error rule (A.1se) marked. (C) Eight selected
m6A regulators with their LASSO coefficients, functional categories, and prognostic types.

influential predictor (mean |SHAP| = 0.42), followed by METTL3
(0.36), FTO (0.28), and HNRNPA2BI (0.25). YTHDF2, VIRMA,
and ALKBH5 demonstrated lower but significant contributions
to model performance.

Waterfall plot analysis revealed differential feature effects on
risk prediction (Figure 5B). IGF2BP2 and METTL3 consistently
contributed to increased mortality risk, while FTO exhibited
protective effects with higher expression associated with better
outcomes. Interaction analysis (Figure 5C) identified significant
synergistic effects between METTL3 and IGF2BP2 (interaction
strength: 0.23), moderate between
HNRNPA2B1 and YTHDEF2 (0.18), and negative interactions
between FTO and ALKBHS5 (-0.21), suggesting cooperative
protective mechanisms. Notably, METTL3 and IGF2BP2 showed
synergistic interaction (interaction strength: 0.23), suggesting a

interactions

cooperative mechanism: METTL3 deposits m6A marks that
high-affinity ~ binding IGF2BP2, thereby
enhancing oncogenic mRNA stability.

The model stratified 1,047 patients into low-risk (n = 537,
51.3%) and high-risk (n = 510, 48.7%) groups with distinct

create sites  for
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mortality rates (15.7% vs. 27.3%). Kaplan-Meier analysis revealed
significant survival differences (Figure 5D): median survival was
not reached for low-risk patients versus 68.4 months for high-risk
patients. Five-year survival rates were 78.2% and 54.3%, respectively
(HR = 2.18, 95% CI: 1.54-3.09, p < 0.001).

Cox
prognostic significance after adjusting for age, TNM stage,
and MSI status (HR = 2.18, 95% CI: 1.54-3.09, p < 0.001)
(Figure 5E). Time-dependent ROC analysis demonstrated
sustained predictive performance (Figure 5F): 1-year AUC =
0.834, 3-year AUC = 0.847, and 5-year AUC = 0.851, indicating
excellent discriminative ability across different time horizons.

Multivariate regression confirmed independent

Enhanced immune infiltration
characterizes low-risk tumor
microenvironments

CIBERSORT analysis revealed distinct immune infiltration
patterns between risk groups (Figure 6A). Low-risk tumors had
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FIGURE 4
Comprehensive performance evaluation of 20 machine learning algorithms across training (n = 733) and validation (n = 314) cohorts. (A) ROC
curves for all 20 algorithms evaluated on the independent validation cohort (TCGA + GEO, n = 314). Each curve represents a distinct algorithm, with
Random Forest (red), XGBoost (blue), and SVM (green) highlighted. Diagonal dashed line indicates random classifier (AUC = 0.5). (B) Distribution of
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higher CD8" T cells (17.2% vs. 10.1%, p < 0.001), activated CD4*
memory T cells (15.3% vs. 9.2%, p < 0.001), and follicular helper
T cells (6.8% vs. 3.1%, p < 0.01). High-risk tumors showed higher
regulatory T cells (9.1% vs. 5.4%, p < 0.001) and M2 macrophages
(12.7% vs. 8.2%, p < 0.001).

To further characterize immune cell interactions, correlation
different
organizational patterns between risk groups (Figure 6B). Low-

network  analysis = demonstrated  markedly
risk tumors displayed positive correlations among effector
high-risk tumors exhibited
Radar plot analysis

(Figure 6C) showed low-risk tumors had higher proportions

immune populations, while

fragmented correlation networks.
of cytotoxic and helper populations.
ESTIMATE algorithm analysis showed low-risk tumors had

higher immune scores (2,487 + 642 vs. 1823 + 521, p < 0.001) and
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lower stromal scores (1,124 + 387 vs. 1,456 + 429, p < 0.001)
(Figure 6D). Heatmap analysis (Figure 6F) showed immune cell
distributions across individual samples, with low-risk cases
having higher levels of CD8" T cells, activated dendritic cells,

and M1 macrophages.

Immunotherapy biomarker analysis
reveals enhanced therapeutic potential in
low-risk tumors

Comprehensive immunotherapy biomarker assessment
demonstrated superior therapeutic indicators in low-risk
patients (Figure 7A). Low-risk tumors exhibited significantly

higher neoantigen burden (287 + 124 vs. 198 + 89, p < 0.001),
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TABLE 2 Detailed performance comparison of 20 machine learning models.

10.3389/ebm.2025.10776

Training AUC  Validation AUC  Accuracy  Sensitivity  Specificity = F1-Score = MCC
Random Forest 0.895 0.847 0.819 0.826 0.815 0.783 0.621
XGBoost 0.887 0.841 0.812 0.814 0.811 0.776 0.609
Support Vector Machine 0.879 0.835 0.806 0.802 0.808 0.768 0.595
Gradient Boosting 0.872 0.829 0.799 0.791 0.804 0.759 0.582
CatBoost 0.868 0.824 0.794 0.784 0.801 0.753 0.573
LightGBM 0.861 0.818 0.787 0.779 0.793 0.745 0.561
Neural Network 0.854 0.812 0.781 0.767 0.789 0.737 0.549
Stacking Classifier 0.849 0.807 0.775 0.761 0.783 0.729 0.538
Extra Trees 0.843 0.801 0.769 0.755 0.777 0.721 0.526
Voting Classifier 0.837 0.795 0.763 0.749 0.771 0.713 0.514
AdaBoost 0.831 0.789 0.756 0.743 0.764 0.705 0.502
Logistic Regression 0.824 0.782 0.749 0.737 0.757 0.696 0.489
Bagging Classifier 0.818 0.776 0.743 0.731 0.751 0.688 0.477
Ridge Classifier 0.812 0.769 0.736 0.725 0.744 0.679 0.464
Decision Tree 0.805 0.762 0.729 0.719 0.737 0.671 0.451
Linear Discriminant Analysis 0.798 0.755 0.722 0.713 0.729 0.662 0.438
K-Nearest Neighbors 0.791 0.748 0.715 0.707 0.721 0.653 0.425
SGD Classifier 0.784 0.741 0.708 0.701 0.713 0.644 0.412
Quadratic Discriminant Analysis 0.777 0.734 0.701 0.695 0.705 0.635 0.399
Naive Bayes 0.769 0.726 0.693 0.689 0.696 0.626 0.385

tumor mutational burden (14.2 + 7.3 vs. 9.7 + 5.1 mutations/Mb,
p <0.001), and microsatellite instability-high frequency (18.6% vs.
9.8%, p < 0.001). T cell-inflamed gene expression profiles were
TIDE
dysfunction signatures. Immunophenoscore (IPS, a composite

elevated while scores indicated reduced immune
metric integrating effector cells, immunosuppressive cells, MHC
molecules, and checkpoint expression) and T cell-inflamed gene
expression profile (GEP, an 18-gene signature predicting anti-PD-
1 response) scores were significantly elevated in low-risk patients.

Paradoxically, low-risk tumors demonstrated higher
immune checkpoint expression across all major inhibitory
receptors (Figures 7B,C): CTLA-4 (6.14 vs. 4.32), PD-1
(5.82 vs. 3.91), PD-L1 (4.27 vs. 2.87), LAG-3 (5.21 vs. 3.84),
TIGIT (5.03 vs. 3.78), and TIM-3 (4.87 vs. 3.52) (all p < 0.001).
This upregulation pattern suggests adaptive immune resistance
mechanisms in response to enhanced T cell activation.

The m6A risk score demonstrated robust predictive capacity
(AUC = 0.724) compared to PD-L1 expression (AUC = 0.598)
and tumor mutational burden (AUC = 0.651) (Figure 7D).

Integrated prediction analysis revealed 64.2% of low-risk
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patients as potential responders versus 35.8% of high-risk
patients (OR: 2.24, 95% CI: 1.69-2.97, p = 0.006) (Figure 7E).

Cross-cancer validation in bladder cancer

The cross-cancer validation revealed limited transferability of
the CRC-derived model to bladder cancer. Supplementary Figure
SIA displays the model coefficients for eight m6A regulators
applied to the bladder cancer cohort. Among these, IGF2BP2
(0.412), METTL3 (0.356), HNRNPA2B1 (0.298), METTL14
(0.245), YTHDF2 (0.189), and VIRMA (0.167) exhibited
positive coefficients indicating risk-associated effects, while
ALKBH5 (-0.156) and FTO (-0.284)
coefficients suggesting protective roles. For immunotherapy
response prediction, the model achieved an AUC of 0.550

showed negative

(95% CI: 0.469-0.631), indicating near-random discrimination
performance (Supplementary Figure S1B). Supplementary Figure
S1C illustrates the distribution of risk scores across the bladder
cancer cohort stratified by immunotherapy response status. The
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waterfall plot reveals substantial overlap between responders and
non-responders across the entire risk score spectrum, with no
clear separation pattern observed at the median cutoff. The
response rates showed no significant difference between risk
groups: 22.4% in the high-risk group versus 16.7% in the low-risk
group (p = 0.224) (Supplementary Figure S1D). Survival analysis
demonstrated no significant prognostic stratification (log-rank
p =0.738; HR = 1.08, 95% CI: 0.67-1.74) (Supplementary Figure
S1E). These findings suggest that the prognostic and predictive
value of m6A regulatory patterns exhibits substantial cancer-type
specificity.

Differential pathway activation defines risk
group molecular phenotypes

Gene Set Enrichment Analysis revealed distinct molecular
programs between risk groups (Figure 8A). High-risk tumors
demonstrated significant enrichment of cell cycle pathways: E2F
targets (NES = 2.18), G2M checkpoint (NES = 1.94), MYC targets
V1 (NES = 1.87), and DNA repair (NES = 1.76) (all FDR <0.005).
(NES = 1.68)
mTORCI signaling were additionally activated.

Epithelial-mesenchymal  transition and

Conversely, low-risk tumors enriched immune surveillance

pathways: interferon-gamma response (NES = -2.09),
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interferon-alpha response (NES = —1.96), allograft rejection
(NES = —1.83), and inflammatory response (NES = —1.71) (all
FDR <0.005). IL6-JAK-STAT3 signaling and complement
pathways were concurrently activated.

Pathway interaction networks (Figure 8B) revealed tightly
coordinated cell cycle modules in high-risk tumors, with
E2F-MYC-cyclin regulatory circuits forming central hubs.
Low-risk networks demonstrated interferon-centered immune
activation, connecting antigen presentation and inflammatory
response pathways.

Individual analysis
observations (Figure 8C). High-risk patients showed
elevated proliferation markers (PCNA, CDC20, CCNEI1)
and reduced immune genes (TAP1, HLA-DRA, IRF1). Low-
risk patients exhibited enhanced antigen presentation
machinery (HLA-DRA, TAPI1), checkpoints
(CD274), and interferon-responsive elements (CXCLI10,
STATI, IRF1).

gene confirmed pathway-level

immune

Subgroup analysis confirms universal
prognostic validity

Comprehensive subgroup analysis demonstrated consistent
prognostic performance across all clinical stratifications with no
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FIGURE 6

Differential immune cell infiltration between m6A risk groups across combined training and validation cohorts (n = 1,047). (A) CIBERSORT-
estimated proportions of 22 immune cell types stratified by m6A risk group. Cell types ordered by absolute difference between groups. Statistical
significance by Mann-Whitney U test with Benjamini-Hochberg correction: *p < 0.05, **p < 0.01, ***p < 0.001. (B) Correlation network analysis of
immune cell populations within each risk group. Nodes represent cell types sized by mean proportion. Edges indicate significant correlations (|r|
>0.3, p < 0.01). (C) Radar plot comparing key immune subsets between risk groups. (D) ESTIMATE algorithm-derived immune scores (left) and stromal
scores (right) by risk group. (E) Heatmap of immune cell abundance across individual patient samples.

significant heterogeneity (interaction test: P = 0.384) (Figure 9).
The m6A risk score maintained robust prognostic value
independent of tumor stage: Stage I-II (HR = 2.31, 95% CL
1.42-3.76, p < 0.001) and Stage III-IV (HR = 2.24, 95% CIL
1.51-3.32, p < 0.001).

Prognostic significance persisted across microsatellite
instability status: MSS/MSI-L (HR = 2.19, 95% CI: 1.54-3.11,
p <0.001) and MSI-H (HR = 2.67, 95% CI: 1.23-5.81, p = 0.013).
Age stratification revealed consistent performance in
patients <65 years (HR = 2.48, 95% CI: 1.56-3.94, p < 0.001)
and >65 years (HR = 2.15, 95% CI: 1.43-3.23, p < 0.001).
Treatment context analysis showed maintained prognostic
value regardless of chemotherapy administration, confirming
broad clinical applicability across diverse patient populations
and treatment scenarios.
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Discussion

This study represents the most comprehensive machine
learning analysis of m6A RNA methylation regulators for
colorectal cancer prognosis. Our 8-gene signature effectively
captures the core regulatory network of m6A modification,
with  IGF2BP2 the
determinant. As an m6A reader that stabilizes oncogenic

emerging  as primary  prognostic
transcripts, IGF2BP2’s prominence aligns with its established
role in cancer progression, as demonstrated by Weng et al.
through CRISPR-Cas9 knockout experiments showing that
IGF2BP2 depletion inhibited CRC cell proliferation and
tumor growth by reducing the stability of m6A-modified
MYC transcripts [20]. Similarly, the secondary importance of
METTL3, the primary m6A writer, reflects its multifaceted
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Immunotherapy response biomarkers and predictive capacity comparison between m6A risk groups (n = 1,047 CRC patients; validation cohort

n = 298 IMvigor210 patients). (A) Comparison of established immunotherapy biomarkers between low-risk and high-risk CRC patients including TMB,
neoantigen load, MSI-high frequency, TIDE score, Immunophenoscore (IPS), and T cell-inflamed GEP. (B) Radar plot of immune checkpoint
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immunotherapy response rates: 36.5% in low-risk vs. 20.3% in high-risk (OR = 2.24, p = 0.006).

oncogenic functions; Li et al. confirmed that METTL3 promotes
CRC progression through m6A-dependent stabilization of
glycolytic genes (HK2, GLUTI1) [21] and tumor stemness
maintenance through SOX2 stabilization [22]. Conversely,
FTO’s role in CRC appears context-dependent, with Chen
et al. demonstrating that FTO regulates genomic stability
through demethylation of DNA damage response genes,
consistent with our finding of higher TMB in high-FTO
[10, 23]. These experimental validations
independent laboratories provide strong biological plausibility

patients from

for our computational findings.

SHAP analysis revealed how individual m6A regulators
contribute to prognosis prediction. Notably, METTL3 and
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IGF2BP2 showed synergistic interaction (interaction strength:
0.23), suggesting a cooperative mechanism: METTL3 deposits
m6A marks that create high-affinity binding sites for IGF2BP2,
thereby enhancing oncogenic mRNA stability. This finding is
supported by recent mechanistic studies showing that IGF2BP
proteins preferentially bind to m6A-modified transcripts in
specific sequence contexts. Conversely, the antagonistic
interaction between FTO and ALKBHS5 (interaction strength:
—0.21) indicates functional redundancy in m6A demethylation,
where the presence of either eraser can partially compensate for
the loss of the other. This redundancy may explain why single-
agent therapies targeting individual m6A erasers have shown

limited efficacy.
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Our comprehensive immune profiling analysis revealed the stability and translation of chemokine mRNAs,
significant differences in CD8" T cell infiltration between particularly CXCL9 and CXCL10, which are critical for
low-risk  (17.8%) and high-risk (10.2%) groups. This CD8" T cell recruitment to the tumor microenvironment.
significant  difference can be attributed to multiple Second, m6A modifications regulate antigen presentation
mechanisms. First, m6A modifications significantly affect through YTHDFI1-mediated control of lysosomal cathepsins
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in dendritic cells, thereby influencing the cross-presentation of
tumor antigens and subsequent CD8" T cell priming [24].
Furthermore, m6A modifications directly impact T cell
exhaustion by regulating the expression of PD-1 and other
exhaustion markers on tumor-infiltrating lymphocytes [25]. In
summary, m6A modifications influence anti-tumor immunity
through multiple interconnected mechanisms.

The increased regulatory T cell infiltration in high-risk
patients (9.1% vs. 5.7%) supports the establishment of an
immunosuppressive microenvironment mediated by m6A
that
METTL3 promotes Treg differentiation and function through

dysregulation. Tong et al. have demonstrated
m6A modification of FOXP3 mRNA, providing a mechanistic
basis for the enhanced immunosuppression observed in high-risk
tumors [26]. Collectively, these findings suggest that m6A
modifications regulate immune mechanisms that determine
tumor immune evasion and patient prognosis.

The strong association between m6A risk scores and
has

showed higher

immunotherapy  biomarkers immediate  clinical

implications. Low-risk patients tumor
mutational burden (14.2 vs. 9.7 mutations/Mb), increased
MSI-H frequency (18.6% vs. 9.8%), elevated neoantigen
counts (287 vs. 198), and favorable TIDE scores (—0.42 vs.
0.31). These that m6A-based

stratification could guide immunotherapy selection, with the

findings  suggest risk
1.8-fold higher predicted response rate in low-risk patients
(36.5% vs. 20.3%) being clinically meaningful and comparable
to established biomarkers like PD-L1 expression [27]. The
relationship between m6A modification and immunotherapy

response has been extensively studied. Bao et al. demonstrated

that m°A-reader YTHDF1 modulates tumor immune
microenvironment and sensitizes CRC to PD-1 blockade
through  m°A-dependent  regulatory  pathways  [28].

Furthermore, recent studies have shown that factors affecting
the
modifications, influence immune checkpoint inhibitor efficacy

tumor  microenvironment, including  epigenetic
[29]. Bagchi et al. comprehensively reviewed mechanisms of
immunotherapy resistance, highlighting epigenetic regulation
as an emerging therapeutic target [30]. These findings support
our observation that m6A-based risk stratification captures
immune biology beyond conventional biomarkers like TMB
and PD-L1 expression.

The limited performance of our CRC-derived m6A model
in the IMvigor210 bladder cancer cohort (AUC = 0.550)
highlights the cancer-type specificity of m6A regulatory
mechanisms. Several factors may explain this finding: (1)
the tumor microenvironment differs substantially between
CRC, which occurs in an immunologically active mucosal
environment with extensive microbiome interactions, and
urothelial carcinoma, which develops in a distinct epithelial
context with different immune cell compositions [31]; (2) the
downstream targets of key regulators such as IGF2BP2 and
METTL3 may vary based on tissue-specific transcriptome
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landscapes [32]; and (3) the treatment context differs
the  IMvigor210
atezolizumab monotherapy whereas our CRC model was

significantly,  as cohort  received
developed using patients who received diverse treatment
regimens. These findings underscore the importance of
cancer-type-specific biomarker development and suggest
that m6A-based prognostic models should be developed and
validated within specific cancer types rather than applied
universally across malignancies.

Machine learning has transformed biomedical research and
precision oncology. Recent studies have demonstrated ML’s
power in integrating multiomics data for cancer prediction.
Lei et al. developed an immunogenic cell death-related gene
expression signature that enabled robust molecular subtyping
and prognostic stratification in CRC [33]. Wu et al. applied
spatial transcriptomics with ML to map the immune landscape of
colorectal liver metastases at single-cell resolution, revealing
previously unrecognized immune-tumor interactions [34].
These advances underscore the potential of ML-driven
biomarker discovery when combined with mechanistic
biological insights. Our machine learning model addresses key
implementation barriers. The 8-gene signature uses existing
platforms like qRT-PCR and NanoString. SHAP analysis
provides clear explanations for individual predictions. Risk
stratification helps guide treatment decisions for adjuvant
therapy and immunotherapy.

Our findings suggest several mo6A-targeting strategies.
METTLS3 inhibitors like STM2457 show promise in preclinical
studies [35]. For IGF2BP2, PROTAC:s offer a promising protein
degradation approach, though specific degraders are still being
developed [36]. FTO inhibitors targeting demethylase activity
show therapeutic potential [37]. Combining m6A modulators
with immunotherapy may create synergistic effects. Different
risk groups have distinct pathway patterns that suggest additional
targets. High-risk patients with activated E2F and MYC pathways
may benefit from CDK4/6 inhibitors or BET bromodomain
inhibitors [38, 39].

Our m6A-based
performance compared to existing prognostic models:
Oncotype DX Colon (C-index ~0.68), ColoPrint (AUC ~0.66),
and CMS classification. The superior performance (AUC =
0.847)
fundamental

framework demonstrates  superior

reflects ~ comprehensive  algorithm  evaluation,

cellular ~ process focus, and enhanced
interpretability through SHAP analysis.

Several limitations should be acknowledged. First, as a
retrospective computational study, our findings require
prospective validation and experimental confirmation in
independent cohorts before clinical implementation. Second,
although SHAP analysis was employed to enhance model
interpretability, we did not develop practical clinical decision-
support tools; the construction of a nomogram or web-based
calculator integrating clinical variables with the m6A risk score

will be pursued in future studies to facilitate clinical
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implementation. Third, our cohorts predominantly comprised
Western populations, warranting validation in ethnically diverse
groups. Fourth, the limited cross-cancer transferability (AUC =
0.550 in bladder cancer) indicates that our model may require
cancer-type-specific recalibration. Fifth, bulk RNA sequencing data
cannot capture intratumoral heterogeneity; integration with single-
cell insights.  Sixth,
immunotherapy based on
computational surrogates rather than real-world treatment

approaches would provide deeper

response  predictions  were
outcomes. Finally, deep learning algorithms were excluded to
prioritize clinical interpretability, though future studies with
larger datasets could explore these approaches. Despite these
limitations, our comprehensive framework provides a foundation
for future experimental validation and clinical translation.

While our m6A-based framework demonstrates superior
performance compared to existing prognostic models, the true
measure of its clinical utility lies in its ability to address unmet
needs in colorectal cancer management. The comprehensive
evaluation of m6A regulation represents a fundamental
advance in understanding cancer biology, but translating these
insights  into  improved remains  the

patient  care

ultimate challenge.
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