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Abstract 

N6-methyladenosine (m6A) RNA methylation regulators have been implicated 

in colorectal cancer (CRC) progression. However, systematic evaluation using 

multiple machine learning approaches for prognostic prediction remains 

limited. This study aimed to develop and validate machine learning models 

for CRC prognosis based on m6A regulators and assess their potential for 

immunotherapy response prediction. We analyzed 1,047 CRC patients from 

TCGA and GEO databases (70% training, 30% validation). Twenty machine 

learning algorithms were systematically evaluated, with LASSO regression 

selecting optimal features from 27 m6A regulators. SHAP analysis provided 

model interpretability. Immune microenvironment characterization and 

immunotherapy response prediction were performed using established 

computational methods. LASSO regression selected eight m6A regulators 

(IGF2BP2, METTL3, HNRNPA2B1, METTL14, YTHDF2, VIRMA, FTO, ALKBH5) 

for model construction. Among 20 algorithms tested, Random Forest 

achieved optimal performance (training AUC = 0.895, validation AUC = 

0.847). SHAP analysis identified IGF2BP2 (mean |SHAP| = 0.42) and METTL3 

(mean |SHAP| = 0.36) as primary contributors to risk prediction. Risk 

stratification showed significant survival differences (HR = 2.41, 95% CI: 

1.73–3.36, p < 0.001). Low-risk patients demonstrated enhanced immune 

infiltration with higher CD8+ T cells (17.8% vs. 10.2%, p < 0.001) and better 

predicted immunotherapy response rates (36.5% vs. 20.3%, p = 0.006). Our 

systematic machine learning analysis demonstrates that m6A regulators can 
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effectively predict CRC prognosis and immunotherapy response. The eight- 

gene signature provides a practical tool for clinical risk assessment and 

treatment decision-making.
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Impact statement

This study addresses the need for reliable prognostic tools in 
colorectal cancer by systematically evaluating machine learning 
approaches for m6A-based risk stratification. While m6A 
modifications are increasingly recognized in cancer biology, 
their clinical application remains limited by methodological 
inconsistencies. We advance the field by providing the first 
comprehensive comparison of 20 ML algorithms for m6A- 
based CRC prognosis, establishing a standardized framework 
for future studies. Our integration of SHAP analysis addresses 
the critical barrier of model interpretability in clinical settings. 
The resulting 8-gene signature demonstrates potential utility for 
patient stratification and preliminary evidence for 
immunotherapy response prediction. This work provides the 
research community with a validated methodology for 
developing m6A-based biomarkers and offers clinicians a 
potential tool for risk assessment. The findings contribute to 
the growing understanding of m6A’s role in CRC progression 
and immune regulation, supporting further investigation into 
epigenetic-based therapeutic strategies.

Introduction

Colorectal cancer (CRC) remains the third most common 
malignancy worldwide, with over 1.9 million new cases and more 
than 900,000 deaths annually reported in 2024 [1]. Despite 
significant advances in surgical techniques, chemotherapy, and 
targeted therapies, the 5-year survival rate for metastatic CRC 
remains approximately 14%, highlighting the urgent need for 
improved prognostic tools and personalized treatment strategies 
[2]. CRC’s diverse molecular subtypes and treatment responses 
require sophisticated predictive models to capture this complexity.

N6-methyladenosine (m6A) represents the most abundant 
internal chemical modification of eukaryotic mRNAs, 
accounting for approximately 0.1–0.4% of all adenosines in 
cellular mRNA [3]. This reversible modification regulates 
various aspects of RNA metabolism, including stability, 
translation efficiency, nuclear export, and localization [4]. The 
m6A modification is dynamically regulated by three categories of 
proteins: “writers” (methyltransferases such as METTL3, 
METTL14, WTAP), “readers” (binding proteins including 
YTHDF1/2/3, IGF2BP1/2/3, HNRNPC), and “erasers” 
(demethylases including FTO and ALKBH5) [5].

Accumulating evidence demonstrates that m6A 
dysregulation is causally involved in cancer initiation, 
progression, metastasis, and therapeutic resistance [6, 7]. In 
CRC specifically, recent mechanistic studies have elucidated 
the pathogenic roles of m6A regulators. Wang et al. 
demonstrated that HES1 promotes aerobic glycolysis through 
IGF2BP2-mediated GLUT1 m6A modification, driving CRC 
progression via m6A-dependent metabolic reprogramming 
[8]. Zhou et al. revealed that METTL3-mediated m6A 
modification promotes metastasis through REG1α stabilization 
and Wnt/β-catenin pathway activation, establishing a direct link 
between epigenetic modification and tumor progression [9]. 
Most recently, Qiao et al. showed that FTO demethylase 
targeting induces ferroptotic cell death through SLC7A11/ 
GPX4 downregulation, highlighting therapeutic vulnerabilities 
[10]. METTL3 overexpression has been shown to promote CRC 
cell proliferation and metastasis through multiple mechanisms, 
including JAK1/STAT3 signaling activation and STC2 axis 
regulation [11, 12]. Conversely, enhanced m6A modification 
through demethylase inhibition has been associated with 
increased chemosensitivity and ferroptosis induction in CRC 
cells [13]. However, the comprehensive prognostic value of m6A 
regulators and their relationship with the tumor immune 
microenvironment in CRC remains incompletely understood.

Machine learning has transformed biomedical research and 
precision oncology by analyzing complex datasets to identify 
patterns and make predictions [14]. Unlike traditional 
statistical methods, machine learning algorithms can capture 
non-linear relationships and complex interactions between 
variables, making them suitable for analyzing the intricate 
regulatory networks of m6A modifications. However, the 
“black box” nature of complex machine learning models poses 
a significant barrier to clinical adoption, as physicians require 
transparent, interpretable predictions to make informed 
treatment decisions [15]. SHapley Additive exPlanations 
(SHAP), a unified framework based on cooperative game 
theory, has emerged as widely adopted method for model 
interpretation by quantifying each feature’s contribution to 
individual predictions [16]. SHAP analysis has demonstrated 
robust performance across diverse domains including 
transportation systems, autonomous vehicle security [17], 
maritime risk assessment [18], and critically, biomedical 
applications. In healthcare, SHAP has been successfully applied 
to predict sepsis outcomes [19], interpret deep learning models in 
radiology, and identify key genetic drivers in cancer prognosis. 
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The method’s model-agnostic nature and consistency with 
human intuition make it particularly valuable for translating 
complex computational models into clinically actionable insights.

Previous studies have primarily focused on individual m6A 
regulators or utilized limited machine learning approaches for 
CRC prognosis prediction. To our knowledge, no study has 
comprehensively evaluated 20 different machine learning 
algorithms for m6A-based prognostic modeling in CRC, nor 
has any study systematically investigated the relationship 
between m6A-based risk stratification and immunotherapy 
response prediction.

In this study, we aimed to: (1) develop and validate a 
comprehensive computational framework incorporating 
20 machine learning algorithms for m6A-based CRC prognosis 
prediction using m6A regulators; (2) identify key m6A genes 
contributing to prognosis using LASSO feature selection; (3) 
provide model interpretability through SHAP analysis; (4) 
investigate the relationship between m6A-based risk 
stratification and immune microenvironment characteristics; 
and (5) evaluate the predictive value for immunotherapy 
response using established computational biomarkers. This 
work provides a hypothesis-generating framework to guide 
future experimental validation and clinical trials. Our findings 
provide a robust framework for personalized risk assessment and 
treatment selection in CRC patients. The overall study design and 
analytical workflow are illustrated in Figure 1.

Materials and methods

Study design and data sources

This retrospective study followed the Transparent Reporting 
of a multivariable prediction model for Individual Prognosis Or 
Diagnosis (TRIPOD) guidelines. We utilized publicly available 
gene expression and clinical data from The Cancer Genome Atlas 
(TCGA) COAD/READ cohorts and Gene Expression Omnibus 
(GEO) datasets (GSE39582).

Data accessibility

TCGA COAD:1

TCGA READ:2

GEO GSE39582:3

IMvigor210:4

The combined dataset comprised 1,047 CRC patients with 
complete gene expression profiles and clinical follow-up data, 
representing one of the largest cohorts utilized for m6A-based 
prognostic modeling in CRC. This sample size substantially 
exceeds the minimum requirements for stable machine 
learning model development and provides adequate statistical 
power for our analyses.

The dataset was divided into training (n = 733, 70%) and 
validation (n = 314, 30%) cohorts using stratified random 
sampling to maintain balanced outcome distribution. Data 
from TCGA COAD/READ and GEO dataset GSE39582 were 
first combined and then randomly split, with the training cohort 
used for model development, feature selection, and 
hyperparameter optimization via 5-fold cross-validation, while 
the validation cohort served as an independent holdout set for 
unbiased performance evaluation. The inclusion/exclusion 
criteria and screening process are detailed in Figure 2. All data 
were obtained from public repositories with appropriate ethical 
approvals from the original studies, and this secondary analysis 
was exempt from additional institutional review board approval.

m6A regulators and data preprocessing

We identified 27 m6A regulators through systematic literature 
review and functional annotation databases, comprising 8 writers 
(METTL3, METTL14, WTAP, VIRMA, RBM15, RBM15B, 
ZC3H13, ZCCHC4), 4 erasers (FTO, ALKBH5, CBLL1, 
ELAVL1), and 15 readers (YTHDC1, YTHDC2, YTHDF1-3, 
HNRNPC, FMR1, LRPPRC, HNRNPA2B1, IGFBP1-3, IGF2BP1-3).

Gene expression data underwent sequential preprocessing: 
log2 transformation, quantile normalization using the 
preprocessCore R package, and Z-score standardization within 
each dataset. Multi-source data integration employed Combat 
batch correction (sva R package version 3.42.0). Quality control 
removed genes with >20% missing values, followed by k-nearest 
neighbors imputation (k = 5) using the VIM R package. Clinical 
variables included age at diagnosis, gender, tumor stage (AJCC 
8th edition), tumor location, microsatellite instability status, and 
survival outcomes (overall survival time and vital status).

Feature selection and model development

LASSO regression with 10-fold cross-validation identified 
prognostically relevant m6A regulators using the glmnet R 
package (version 4.1-4). The optimal lambda parameter was 
selected using the one standard error rule (lambda.1se) with 
random seed set to 123 for reproducibility. Twenty machine 
learning algorithms were implemented in Python 3.8 using 
scikit-learn (version 1.0.2), XGBoost (version 1.6.1), 
LightGBM (version 3.3.2), and CatBoost (version 1.0.6). 
Hyperparameter optimization employed 5-fold stratified cross- 

1 https://portal.gdc.cancer.gov/projects/TCGA-COAD

2 https://portal.gdc.cancer.gov/projects/TCGA-READ

3 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582

4 http://research-pub.gene.com/IMvigor210CoreBiologies/
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validation with grid search (random_state = 42). Class imbalance 
was addressed using SMOTE from the imbalanced-learn package 
(version 0.8.1) with random_state = 42.

Model evaluation and interpretability

Model performance was assessed using AUC-ROC as the 
primary metric, complemented by AUC-PR, accuracy, 

sensitivity, specificity, precision, F1-score, and Matthews 
correlation coefficient calculated using scikit-learn metrics. 
Model calibration was evaluated using Hosmer-Lemeshow test 
(scipy.stats) and calibration plots.

We selected SHAP (SHapley Additive exPlanations) as our 
primary interpretability framework based on several key 
advantages. First, SHAP is grounded in cooperative game 
theory with solid mathematical foundations, uniquely 
satisfying three desirable properties: local accuracy, 

FIGURE 1 
Comprehensive study workflow and analytical framework. The flowchart illustrates the complete analytical pipeline from data acquisition 
through clinical translation. (1) multi-cohort data acquisition (TCGA, GEO, validation cohorts); (2) data preprocessing and quality control; (3) feature 
selection via LASSO (27→8 m6A regulators); (4) machine learning model development with 20 algorithms; (5) model interpretation using SHAP 
analysis; (6) comprehensive validation across survival, immune microenvironment, and therapeutic response dimensions; (7) external validation 
in independent immunotherapy cohorts; and (8) development of clinical translation tools.
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missingness, and consistency [15, 16]. Second, SHAP provides 
both individual-level explanations and global interpretability 
through aggregated SHAP values, which is critical for 
personalized medicine. Third, TreeExplainer enables 
computationally efficient calculation of exact SHAP values for 
tree-based models in polynomial time, making it feasible for 
clinical deployment. Finally, SHAP has been extensively 
validated in healthcare applications and demonstrates high 
physician acceptance due to its alignment with clinical 
reasoning patterns.

SHAP framework (version 0.40.0) provided model 
interpretability through TreeExplainer for tree-based models 

and KernelExplainer for others, generating feature importance 
rankings, waterfall plots, and interaction analyses for the 
optimal model.

Risk stratification and survival analysis

Risk scores were calculated as weighted linear combinations 
of selected m6A regulators using LASSO coefficients: Risk 
Score = 􏽐(βi × Genei). Optimal cutoffs were determined via 
maximally selected rank statistics using the maxstat R package 
with minprop = 0.1 and maxprop = 0.9. Survival analysis 

FIGURE 2 
Study design and patient flow diagram. Flowchart showing patient selection from TCGA COAD/READ and GEO (GSE39582) databases. Of 
1,523 initially screened patients, 476 were excluded due to missing survival data (n = 234), incomplete gene expression (n = 156), or follow- 
up <30 days (n = 86). The final cohort (n = 1,047) was randomly divided into training (n = 733, 70%) and validation (n = 314, 30%) sets.
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employed Kaplan-Meier curves with log-rank tests (survival R 
package), Cox proportional hazards regression (coxph function), 
time-dependent ROC analysis using the timeROC R package for 
1-, 3-, and 5-year predictions, concordance index (Harrell’s 
C-index), and restricted mean survival time 
(survRM2 R package).

Immune microenvironment 
characterization

Tumor immune microenvironment was characterized using 
established algorithms: CIBERSORT (22 immune cell types) with 
LM22 signature matrix and 1,000 permutations, ESTIMATE 
algorithm for immune and stromal scores, MCP-counter for 
10 immune and stromal populations, quanTIseq for 
immunotherapy-relevant cell types, and EPIC for immune and 
cancer cell fraction estimation. All analyses were performed 
using respective R packages with default parameters. Immune 
checkpoint genes (PDCD1, CD274, CTLA4, LAG3, HAVCR2, 
TIGIT) expression levels were extracted and log2-transformed. 
Immune phenotypes were classified as immune-inflamed (CD8+ 

T cells > median and immune score > median), immune- 
excluded (moderate immune infiltration), or immune-desert 
(both CD8+ T cells and immune score < median).

Immunotherapy response prediction

Immunotherapy response potential was evaluated using 
established computational methods. Tumor mutational burden 
(TMB) was calculated as the total number of nonsynonymous 
mutations per megabase from somatic mutation data. 
Microsatellite instability (MSI) status was determined using 
MSIsensor algorithm with default parameters (≥3.5 classified as 
MSI-high). Neoantigen load was predicted using NetMHCpan 
4.0 for HLA class I binding prediction with binding affinity 
threshold <500 nM. TIDE score was calculated using the TIDE 
web portal5. Immunophenoscore (IPS) was calculated based on 
four categories of genes (effector cells, immunosuppressive cells, 
MHC molecules, and checkpoints) using established methodology. 
T cell-inflamed gene expression profile (GEP) was calculated using 
the 18-gene signature with weighted sum approach.

Cross-cancer validation

To evaluate the generalizability of our m6A risk model across 
different cancer types, we performed an independent cross- 

cancer validation using the IMvigor210 bladder cancer cohort. 
The IMvigor210 dataset comprises 348 patients with metastatic 
urothelial carcinoma who received atezolizumab (anti-PD-L1) 
immunotherapy, with available gene expression data, survival 
outcomes, and treatment response information. Gene expression 
data were log2-transformed and Z-score normalized. The eight 
m6A regulators from our CRC-derived model were mapped to 
the bladder cancer expression matrix. Risk scores were calculated 
using the fixed LASSO coefficients derived from the CRC 
training cohort, without any re-training. Patients were 
stratified into high-risk and low-risk groups based on the 
median risk score.

Statistical analysis

All statistical analyses were performed using R (version 4.2.0) 
and Python (version 3.8). Continuous variables were compared 
using Student’s t-test or Mann-Whitney U test based on 
normality assessed by Shapiro-Wilk test. Categorical variables 
were compared using chi-square test or Fisher’s exact test. 
Survival differences were assessed using log-rank test. 
Statistical significance was set at P < 0.05. Multiple testing 
correction was applied using Benjamini-Hochberg false 
discovery rate when appropriate. All computational analyses 
were performed with reproducible seeds to ensure result 
reproducibility.

Complete analysis code, detailed parameter settings, software 
environment specifications, and step-by-step workflow 
documentation are provided in the Supplementary Material
(Supplementary Material S1, Supplementary Tables S1, S2). 
All analyses were performed with random seed = 42 to ensure 
reproducibility.

Results

Baseline characteristics

The study cohort comprised 1,047 CRC patients with a median 
age of 66 years [interquartile range (IQR): 57–74 years]. The training 
cohort (n = 733) included 392 males (53.5%) and 341 females 
(46.5%), while the validation cohort (n = 314) consisted of 171 males 
(54.5%) and 143 females (45.5%). Baseline characteristics were well- 
balanced between cohorts (Table 1).

Feature selection of m6A regulators for 
prognostic model construction

LASSO regression with 10-fold cross-validation was applied 
to identify prognostically relevant m6A regulators from the 
initial 27-gene panel. The optimal penalty parameter (λ* = 5 http://tide.dfci.harvard.edu/
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0.0342) was determined using the minimum cross-validation 
error plus one standard error criterion (Figures 3A,B).

Eight m6A regulators were selected for prognostic model 
construction (Figure 3C). Six genes showed positive coefficients, 
indicating adverse prognostic associations: IGF2BP2 (0.412), 
METTL3 (0.356), HNRNPA2B1 (0.298), METTL14 (0.245), 
YTHDF2 (0.189), and VIRMA (0.167). Two genes exhibited 
negative coefficients, suggesting protective effects: FTO 
(−0.284) and ALKBH5 (−0.156).

The selected regulators encompassed all three functional 
categories of m6A machinery: writers (METTL3, METTL14, 
VIRMA), readers (IGF2BP2, HNRNPA2B1, YTHDF2), and 
erasers (FTO, ALKBH5), indicating comprehensive representation 
of the m6A regulatory system in prognostic prediction.

Machine learning model performance 
evaluation

Twenty machine learning algorithms were systematically 
evaluated using the eight-gene m6A signature for prognostic 
prediction. ROC curve analysis demonstrated that most models 
achieved satisfactory predictive performance, with distinct 
performance tiers emerging across the algorithmic 
spectrum (Figure 4A).

Performance stratification revealed that 2 models achieved 
excellent performance (AUC >0.84), 7 models demonstrated 
good performance (AUC 0.80–0.84), 6 models showed fair 

performance (AUC 0.75–0.80), and 5 models exhibited poor 
performance (AUC <0.75) (Figure 4B).

Among all evaluated algorithms, Random Forest (RF) 
demonstrated superior overall performance with the highest 
AUC of 0.887 (training) and 0.857 (validation), followed by 
XGBoost (XGB, AUC = 0.885/0.841) and Support Vector 
Machine (SVM, AUC = 0.874/0.851) (Figure 4C). The RF 
model exhibited excellent calibration (Hosmer-Lemeshow p = 
0.342) and maintained robust performance across multiple 
evaluation metrics.

Comprehensive performance assessment using radar chart 
analysis confirmed RF’s superiority across key metrics including 
AUC, accuracy, F1 score, sensitivity, and specificity, with XGB 
and SVM showing comparable but slightly inferior performance 
profiles (Figure 4D). Based on these results, the Random Forest 
model was selected as the optimal algorithm for subsequent 
prognostic model development and validation 
(Table 2, Figure 4).

SHAP analysis reveals key feature 
contributions to risk prediction

To understand which m6A regulators drove these 
predictions, we performed SHAP analysis to quantify 
individual feature contributions. SHAP analysis identified 
distinct contribution patterns of m6A regulators to risk 
prediction (Figure 5A). IGF2BP2 emerged as the most 

TABLE 1 Baseline characteristics of study cohorts.

Characteristic Training Set (n = 733) Validation Set (n = 314) P-value

Age, median (IQR) 66 (57–74) 67 (58–75) 0.542

Gender, n (%) 0.812
Male 392 (53.5%) 171 (54.5%)
Female 341 (46.5%) 143 (45.5%)

TNM Stage, n (%) 0.753
Stage I 127 (17.3%) 52 (16.6%)
Stage II 276 (37.7%) 115 (36.6%)
Stage III 243 (33.2%) 108 (34.4%)
Stage IV 87 (11.9%) 39 (12.4%)

Tumor Location, n (%) 0.834
Right colon 284 (38.7%) 125 (39.8%)
Left colon 271 (37.0%) 112 (35.7%)
Rectum 178 (24.3%) 77 (24.5%)

MSI Status, n (%) 0.689
MSI-H 89 (12.1%) 41 (13.1%)
MSS/MSI-L 644 (87.9%) 273 (86.9%)

Adjuvant Chemotherapy, n (%) 423 (57.7%) 186 (59.2%) 0.674

Death Events, n (%) 200 (27.3%) 86 (27.4%) 0.973

Follow-up Time, median (IQR), months 32.5 (18.2–54.3) 31.8 (17.5–53.6) 0.721
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influential predictor (mean |SHAP| = 0.42), followed by METTL3 
(0.36), FTO (0.28), and HNRNPA2B1 (0.25). YTHDF2, VIRMA, 
and ALKBH5 demonstrated lower but significant contributions 
to model performance.

Waterfall plot analysis revealed differential feature effects on 
risk prediction (Figure 5B). IGF2BP2 and METTL3 consistently 
contributed to increased mortality risk, while FTO exhibited 
protective effects with higher expression associated with better 
outcomes. Interaction analysis (Figure 5C) identified significant 
synergistic effects between METTL3 and IGF2BP2 (interaction 
strength: 0.23), moderate interactions between 
HNRNPA2B1 and YTHDF2 (0.18), and negative interactions 
between FTO and ALKBH5 (−0.21), suggesting cooperative 
protective mechanisms. Notably, METTL3 and IGF2BP2 showed 
synergistic interaction (interaction strength: 0.23), suggesting a 
cooperative mechanism: METTL3 deposits m6A marks that 
create high-affinity binding sites for IGF2BP2, thereby 
enhancing oncogenic mRNA stability.

The model stratified 1,047 patients into low-risk (n = 537, 
51.3%) and high-risk (n = 510, 48.7%) groups with distinct 

mortality rates (15.7% vs. 27.3%). Kaplan-Meier analysis revealed 
significant survival differences (Figure 5D): median survival was 
not reached for low-risk patients versus 68.4 months for high-risk 
patients. Five-year survival rates were 78.2% and 54.3%, respectively 
(HR = 2.18, 95% CI: 1.54–3.09, p < 0.001).

Multivariate Cox regression confirmed independent 
prognostic significance after adjusting for age, TNM stage, 
and MSI status (HR = 2.18, 95% CI: 1.54–3.09, p < 0.001) 
(Figure 5E). Time-dependent ROC analysis demonstrated 
sustained predictive performance (Figure 5F): 1-year AUC = 
0.834, 3-year AUC = 0.847, and 5-year AUC = 0.851, indicating 
excellent discriminative ability across different time horizons.

Enhanced immune infiltration 
characterizes low-risk tumor 
microenvironments

CIBERSORT analysis revealed distinct immune infiltration 
patterns between risk groups (Figure 6A). Low-risk tumors had 

FIGURE 3 
Feature selection of m6A regulators using LASSO regression. (A) LASSO coefficient paths for 27 m6A regulators. The optimal λ* = 0.0342 is 
indicated by the vertical dashed line. (B) Cross-validation error plot with minimum error and one standard error rule (λ.1se) marked. (C) Eight selected 
m6A regulators with their LASSO coefficients, functional categories, and prognostic types.
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higher CD8+ T cells (17.2% vs. 10.1%, p < 0.001), activated CD4+ 

memory T cells (15.3% vs. 9.2%, p < 0.001), and follicular helper 
T cells (6.8% vs. 3.1%, p < 0.01). High-risk tumors showed higher 
regulatory T cells (9.1% vs. 5.4%, p < 0.001) and M2 macrophages 
(12.7% vs. 8.2%, p < 0.001).

To further characterize immune cell interactions, correlation 
network analysis demonstrated markedly different 
organizational patterns between risk groups (Figure 6B). Low- 
risk tumors displayed positive correlations among effector 
immune populations, while high-risk tumors exhibited 
fragmented correlation networks. Radar plot analysis 
(Figure 6C) showed low-risk tumors had higher proportions 
of cytotoxic and helper populations.

ESTIMATE algorithm analysis showed low-risk tumors had 
higher immune scores (2,487 ± 642 vs. 1823 ± 521, p < 0.001) and 

lower stromal scores (1,124 ± 387 vs. 1,456 ± 429, p < 0.001) 
(Figure 6D). Heatmap analysis (Figure 6E) showed immune cell 
distributions across individual samples, with low-risk cases 
having higher levels of CD8+ T cells, activated dendritic cells, 
and M1 macrophages.

Immunotherapy biomarker analysis 
reveals enhanced therapeutic potential in 
low-risk tumors

Comprehensive immunotherapy biomarker assessment 
demonstrated superior therapeutic indicators in low-risk 
patients (Figure 7A). Low-risk tumors exhibited significantly 
higher neoantigen burden (287 ± 124 vs. 198 ± 89, p < 0.001), 

FIGURE 4 
Comprehensive performance evaluation of 20 machine learning algorithms across training (n = 733) and validation (n = 314) cohorts. (A) ROC 
curves for all 20 algorithms evaluated on the independent validation cohort (TCGA + GEO, n = 314). Each curve represents a distinct algorithm, with 
Random Forest (red), XGBoost (blue), and SVM (green) highlighted. Diagonal dashed line indicates random classifier (AUC = 0.5). (B) Distribution of 
algorithm performance tiers in validation cohort. Models categorized as: Excellent (AUC >0.84, n = 2), Good (AUC 0.80–0.84, n = 7), Fair (AUC 
0.75–0.80, n = 6), and Poor (AUC <0.75, n = 5). (C) Comparison of training (TCGA + GEO, n = 733, light bars) versus validation (n = 314, dark bars) AUC 
values for top 10 algorithms. Error bars represent 95% confidence intervals calculated by 1,000 bootstrap iterations. (D) Radar plot comparing six 
evaluation metrics (AUC, accuracy, F1-score, sensitivity, specificity, MCC) for top 5 algorithms in validation cohort. All performance metrics calculated 
on validation cohort using optimal hyperparameters determined through 5-fold cross-validation on training data.
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tumor mutational burden (14.2 ± 7.3 vs. 9.7 ± 5.1 mutations/Mb, 
p < 0.001), and microsatellite instability-high frequency (18.6% vs. 
9.8%, p < 0.001). T cell-inflamed gene expression profiles were 
elevated while TIDE scores indicated reduced immune 
dysfunction signatures. Immunophenoscore (IPS, a composite 
metric integrating effector cells, immunosuppressive cells, MHC 
molecules, and checkpoint expression) and T cell-inflamed gene 
expression profile (GEP, an 18-gene signature predicting anti-PD- 
1 response) scores were significantly elevated in low-risk patients.

Paradoxically, low-risk tumors demonstrated higher 
immune checkpoint expression across all major inhibitory 
receptors (Figures 7B,C): CTLA-4 (6.14 vs. 4.32), PD-1 
(5.82 vs. 3.91), PD-L1 (4.27 vs. 2.87), LAG-3 (5.21 vs. 3.84), 
TIGIT (5.03 vs. 3.78), and TIM-3 (4.87 vs. 3.52) (all p < 0.001). 
This upregulation pattern suggests adaptive immune resistance 
mechanisms in response to enhanced T cell activation.

The m6A risk score demonstrated robust predictive capacity 
(AUC = 0.724) compared to PD-L1 expression (AUC = 0.598) 
and tumor mutational burden (AUC = 0.651) (Figure 7D). 
Integrated prediction analysis revealed 64.2% of low-risk 

patients as potential responders versus 35.8% of high-risk 
patients (OR: 2.24, 95% CI: 1.69–2.97, p = 0.006) (Figure 7E).

Cross-cancer validation in bladder cancer

The cross-cancer validation revealed limited transferability of 
the CRC-derived model to bladder cancer. Supplementary Figure 
S1A displays the model coefficients for eight m6A regulators 
applied to the bladder cancer cohort. Among these, IGF2BP2 
(0.412), METTL3 (0.356), HNRNPA2B1 (0.298), METTL14 
(0.245), YTHDF2 (0.189), and VIRMA (0.167) exhibited 
positive coefficients indicating risk-associated effects, while 
ALKBH5 (−0.156) and FTO (−0.284) showed negative 
coefficients suggesting protective roles. For immunotherapy 
response prediction, the model achieved an AUC of 0.550 
(95% CI: 0.469–0.631), indicating near-random discrimination 
performance (Supplementary Figure S1B). Supplementary Figure 
S1C illustrates the distribution of risk scores across the bladder 
cancer cohort stratified by immunotherapy response status. The 

TABLE 2 Detailed performance comparison of 20 machine learning models.

Model Training AUC Validation AUC Accuracy Sensitivity Specificity F1-Score MCC

Random Forest 0.895 0.847 0.819 0.826 0.815 0.783 0.621

XGBoost 0.887 0.841 0.812 0.814 0.811 0.776 0.609

Support Vector Machine 0.879 0.835 0.806 0.802 0.808 0.768 0.595

Gradient Boosting 0.872 0.829 0.799 0.791 0.804 0.759 0.582

CatBoost 0.868 0.824 0.794 0.784 0.801 0.753 0.573

LightGBM 0.861 0.818 0.787 0.779 0.793 0.745 0.561

Neural Network 0.854 0.812 0.781 0.767 0.789 0.737 0.549

Stacking Classifier 0.849 0.807 0.775 0.761 0.783 0.729 0.538

Extra Trees 0.843 0.801 0.769 0.755 0.777 0.721 0.526

Voting Classifier 0.837 0.795 0.763 0.749 0.771 0.713 0.514

AdaBoost 0.831 0.789 0.756 0.743 0.764 0.705 0.502

Logistic Regression 0.824 0.782 0.749 0.737 0.757 0.696 0.489

Bagging Classifier 0.818 0.776 0.743 0.731 0.751 0.688 0.477

Ridge Classifier 0.812 0.769 0.736 0.725 0.744 0.679 0.464

Decision Tree 0.805 0.762 0.729 0.719 0.737 0.671 0.451

Linear Discriminant Analysis 0.798 0.755 0.722 0.713 0.729 0.662 0.438

K-Nearest Neighbors 0.791 0.748 0.715 0.707 0.721 0.653 0.425

SGD Classifier 0.784 0.741 0.708 0.701 0.713 0.644 0.412

Quadratic Discriminant Analysis 0.777 0.734 0.701 0.695 0.705 0.635 0.399

Naive Bayes 0.769 0.726 0.693 0.689 0.696 0.626 0.385
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waterfall plot reveals substantial overlap between responders and 
non-responders across the entire risk score spectrum, with no 
clear separation pattern observed at the median cutoff. The 
response rates showed no significant difference between risk 
groups: 22.4% in the high-risk group versus 16.7% in the low-risk 
group (p = 0.224) (Supplementary Figure S1D). Survival analysis 
demonstrated no significant prognostic stratification (log-rank 
p = 0.738; HR = 1.08, 95% CI: 0.67–1.74) (Supplementary Figure 
S1E). These findings suggest that the prognostic and predictive 
value of m6A regulatory patterns exhibits substantial cancer-type 
specificity.

Differential pathway activation defines risk 
group molecular phenotypes

Gene Set Enrichment Analysis revealed distinct molecular 
programs between risk groups (Figure 8A). High-risk tumors 
demonstrated significant enrichment of cell cycle pathways: E2F 
targets (NES = 2.18), G2M checkpoint (NES = 1.94), MYC targets 
V1 (NES = 1.87), and DNA repair (NES = 1.76) (all FDR <0.005). 
Epithelial-mesenchymal transition (NES = 1.68) and 
mTORC1 signaling were additionally activated.

Conversely, low-risk tumors enriched immune surveillance 
pathways: interferon-gamma response (NES = −2.09), 

interferon-alpha response (NES = −1.96), allograft rejection 
(NES = −1.83), and inflammatory response (NES = −1.71) (all 
FDR <0.005). IL6-JAK-STAT3 signaling and complement 
pathways were concurrently activated.

Pathway interaction networks (Figure 8B) revealed tightly 
coordinated cell cycle modules in high-risk tumors, with 
E2F-MYC-cyclin regulatory circuits forming central hubs. 
Low-risk networks demonstrated interferon-centered immune 
activation, connecting antigen presentation and inflammatory 
response pathways.

Individual gene analysis confirmed pathway-level 
observations (Figure 8C). High-risk patients showed 
elevated proliferation markers (PCNA, CDC20, CCNE1) 
and reduced immune genes (TAP1, HLA-DRA, IRF1). Low- 
risk patients exhibited enhanced antigen presentation 
machinery (HLA-DRA, TAP1), immune checkpoints 
(CD274), and interferon-responsive elements (CXCL10, 
STAT1, IRF1).

Subgroup analysis confirms universal 
prognostic validity

Comprehensive subgroup analysis demonstrated consistent 
prognostic performance across all clinical stratifications with no 

FIGURE 5 
Model interpretation and survival analysis. (A) SHAP feature importance ranking for eight m6A regulators. (B) SHAP waterfall plot showing individual 
feature contributions to risk prediction. (C) SHAP interaction heatmap revealing feature dependencies. (D) Kaplan-Meier survival curves for risk groups 
(HR = 2.18, 95% CI: 1.54–3.09, p < 0.001). (E) Forest plot from multivariate Cox regression. (F) Time-dependent ROC curves at 1-, 3-, and 5-year intervals.
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significant heterogeneity (interaction test: P = 0.384) (Figure 9). 
The m6A risk score maintained robust prognostic value 
independent of tumor stage: Stage I-II (HR = 2.31, 95% CI: 
1.42–3.76, p < 0.001) and Stage III-IV (HR = 2.24, 95% CI: 
1.51–3.32, p < 0.001).

Prognostic significance persisted across microsatellite 
instability status: MSS/MSI-L (HR = 2.19, 95% CI: 1.54–3.11, 
p < 0.001) and MSI-H (HR = 2.67, 95% CI: 1.23–5.81, p = 0.013). 
Age stratification revealed consistent performance in 
patients <65 years (HR = 2.48, 95% CI: 1.56–3.94, p < 0.001) 
and ≥65 years (HR = 2.15, 95% CI: 1.43–3.23, p < 0.001). 
Treatment context analysis showed maintained prognostic 
value regardless of chemotherapy administration, confirming 
broad clinical applicability across diverse patient populations 
and treatment scenarios.

Discussion

This study represents the most comprehensive machine 
learning analysis of m6A RNA methylation regulators for 
colorectal cancer prognosis. Our 8-gene signature effectively 
captures the core regulatory network of m6A modification, 
with IGF2BP2 emerging as the primary prognostic 
determinant. As an m6A reader that stabilizes oncogenic 
transcripts, IGF2BP2’s prominence aligns with its established 
role in cancer progression, as demonstrated by Weng et al. 
through CRISPR-Cas9 knockout experiments showing that 
IGF2BP2 depletion inhibited CRC cell proliferation and 
tumor growth by reducing the stability of m6A-modified 
MYC transcripts [20]. Similarly, the secondary importance of 
METTL3, the primary m6A writer, reflects its multifaceted 

FIGURE 6 
Differential immune cell infiltration between m6A risk groups across combined training and validation cohorts (n = 1,047). (A) CIBERSORT- 
estimated proportions of 22 immune cell types stratified by m6A risk group. Cell types ordered by absolute difference between groups. Statistical 
significance by Mann-Whitney U test with Benjamini-Hochberg correction: *p < 0.05, **p < 0.01, ***p < 0.001. (B) Correlation network analysis of 
immune cell populations within each risk group. Nodes represent cell types sized by mean proportion. Edges indicate significant correlations (|r| 
>0.3, p < 0.01). (C) Radar plot comparing key immune subsets between risk groups. (D) ESTIMATE algorithm-derived immune scores (left) and stromal 
scores (right) by risk group. (E) Heatmap of immune cell abundance across individual patient samples.

Experimental Biology and Medicine 
Published by Frontiers 

Society for Experimental Biology and Medicine 12

Kong et al. 10.3389/ebm.2025.10776

https://doi.org/10.3389/ebm.2025.10776


oncogenic functions; Li et al. confirmed that METTL3 promotes 
CRC progression through m6A-dependent stabilization of 
glycolytic genes (HK2, GLUT1) [21] and tumor stemness 
maintenance through SOX2 stabilization [22]. Conversely, 
FTO’s role in CRC appears context-dependent, with Chen 
et al. demonstrating that FTO regulates genomic stability 
through demethylation of DNA damage response genes, 
consistent with our finding of higher TMB in high-FTO 
patients [10, 23]. These experimental validations from 
independent laboratories provide strong biological plausibility 
for our computational findings.

SHAP analysis revealed how individual m6A regulators 
contribute to prognosis prediction. Notably, METTL3 and 

IGF2BP2 showed synergistic interaction (interaction strength: 
0.23), suggesting a cooperative mechanism: METTL3 deposits 
m6A marks that create high-affinity binding sites for IGF2BP2, 
thereby enhancing oncogenic mRNA stability. This finding is 
supported by recent mechanistic studies showing that IGF2BP 
proteins preferentially bind to m6A-modified transcripts in 
specific sequence contexts. Conversely, the antagonistic 
interaction between FTO and ALKBH5 (interaction strength: 
−0.21) indicates functional redundancy in m6A demethylation, 
where the presence of either eraser can partially compensate for 
the loss of the other. This redundancy may explain why single- 
agent therapies targeting individual m6A erasers have shown 
limited efficacy.

FIGURE 7 
Immunotherapy response biomarkers and predictive capacity comparison between m6A risk groups (n = 1,047 CRC patients; validation cohort 
n = 298 IMvigor210 patients). (A) Comparison of established immunotherapy biomarkers between low-risk and high-risk CRC patients including TMB, 
neoantigen load, MSI-high frequency, TIDE score, Immunophenoscore (IPS), and T cell-inflamed GEP. (B) Radar plot of immune checkpoint 
expression levels in low-risk versus high-risk tumors. (C) Heatmap of checkpoint gene expression across individual samples. (D) ROC curve 
comparison for immunotherapy response prediction: m6A risk score (AUC = 0.698), PD-L1 (AUC = 0.621), TMB (AUC = 0.683). (E) Predicted 
immunotherapy response rates: 36.5% in low-risk vs. 20.3% in high-risk (OR = 2.24, p = 0.006).
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Our comprehensive immune profiling analysis revealed 
significant differences in CD8+ T cell infiltration between 
low-risk (17.8%) and high-risk (10.2%) groups. This 
significant difference can be attributed to multiple 
mechanisms. First, m6A modifications significantly affect 

the stability and translation of chemokine mRNAs, 
particularly CXCL9 and CXCL10, which are critical for 
CD8+ T cell recruitment to the tumor microenvironment. 
Second, m6A modifications regulate antigen presentation 
through YTHDF1-mediated control of lysosomal cathepsins 

FIGURE 8 
Pathway enrichment analysis. (A) GSEA results showing enriched pathways in high-risk (red) versus low-risk (blue) tumors. Significance: *p < 
0.05, **p < 0.01, ***p < 0.001. (B) Pathway interaction network with node size indicating NES values. (C) Heatmap of representative genes from 
enriched pathways across risk groups. Expression values are Z-score normalized.

FIGURE 9 
Subgroup analysis of prognostic validity. Forest plot showing hazard ratios with 95% confidence intervals across clinical subgroups. Circle size 
indicates sample weight. The m6A risk score maintained consistent prognostic significance across all subgroups (interaction test: P = 0.384). The 
vertical red line at HR = 1.0 represents no effect.
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in dendritic cells, thereby influencing the cross-presentation of 
tumor antigens and subsequent CD8+ T cell priming [24]. 
Furthermore, m6A modifications directly impact T cell 
exhaustion by regulating the expression of PD-1 and other 
exhaustion markers on tumor-infiltrating lymphocytes [25]. In 
summary, m6A modifications influence anti-tumor immunity 
through multiple interconnected mechanisms.

The increased regulatory T cell infiltration in high-risk 
patients (9.1% vs. 5.7%) supports the establishment of an 
immunosuppressive microenvironment mediated by m6A 
dysregulation. Tong et al. have demonstrated that 
METTL3 promotes Treg differentiation and function through 
m6A modification of FOXP3 mRNA, providing a mechanistic 
basis for the enhanced immunosuppression observed in high-risk 
tumors [26]. Collectively, these findings suggest that m6A 
modifications regulate immune mechanisms that determine 
tumor immune evasion and patient prognosis.

The strong association between m6A risk scores and 
immunotherapy biomarkers has immediate clinical 
implications. Low-risk patients showed higher tumor 
mutational burden (14.2 vs. 9.7 mutations/Mb), increased 
MSI-H frequency (18.6% vs. 9.8%), elevated neoantigen 
counts (287 vs. 198), and favorable TIDE scores (−0.42 vs. 
0.31). These findings suggest that m6A-based risk 
stratification could guide immunotherapy selection, with the 
1.8-fold higher predicted response rate in low-risk patients 
(36.5% vs. 20.3%) being clinically meaningful and comparable 
to established biomarkers like PD-L1 expression [27]. The 
relationship between m6A modification and immunotherapy 
response has been extensively studied. Bao et al. demonstrated 
that m6A-reader YTHDF1 modulates tumor immune 
microenvironment and sensitizes CRC to PD-1 blockade 
through m6A-dependent regulatory pathways [28]. 
Furthermore, recent studies have shown that factors affecting 
the tumor microenvironment, including epigenetic 
modifications, influence immune checkpoint inhibitor efficacy 
[29]. Bagchi et al. comprehensively reviewed mechanisms of 
immunotherapy resistance, highlighting epigenetic regulation 
as an emerging therapeutic target [30]. These findings support 
our observation that m6A-based risk stratification captures 
immune biology beyond conventional biomarkers like TMB 
and PD-L1 expression.

The limited performance of our CRC-derived m6A model 
in the IMvigor210 bladder cancer cohort (AUC = 0.550) 
highlights the cancer-type specificity of m6A regulatory 
mechanisms. Several factors may explain this finding: (1) 
the tumor microenvironment differs substantially between 
CRC, which occurs in an immunologically active mucosal 
environment with extensive microbiome interactions, and 
urothelial carcinoma, which develops in a distinct epithelial 
context with different immune cell compositions [31]; (2) the 
downstream targets of key regulators such as IGF2BP2 and 
METTL3 may vary based on tissue-specific transcriptome 

landscapes [32]; and (3) the treatment context differs 
significantly, as the IMvigor210 cohort received 
atezolizumab monotherapy whereas our CRC model was 
developed using patients who received diverse treatment 
regimens. These findings underscore the importance of 
cancer-type-specific biomarker development and suggest 
that m6A-based prognostic models should be developed and 
validated within specific cancer types rather than applied 
universally across malignancies.

Machine learning has transformed biomedical research and 
precision oncology. Recent studies have demonstrated ML’s 
power in integrating multiomics data for cancer prediction. 
Lei et al. developed an immunogenic cell death-related gene 
expression signature that enabled robust molecular subtyping 
and prognostic stratification in CRC [33]. Wu et al. applied 
spatial transcriptomics with ML to map the immune landscape of 
colorectal liver metastases at single-cell resolution, revealing 
previously unrecognized immune-tumor interactions [34]. 
These advances underscore the potential of ML-driven 
biomarker discovery when combined with mechanistic 
biological insights. Our machine learning model addresses key 
implementation barriers. The 8-gene signature uses existing 
platforms like qRT-PCR and NanoString. SHAP analysis 
provides clear explanations for individual predictions. Risk 
stratification helps guide treatment decisions for adjuvant 
therapy and immunotherapy.

Our findings suggest several m6A-targeting strategies. 
METTL3 inhibitors like STM2457 show promise in preclinical 
studies [35]. For IGF2BP2, PROTACs offer a promising protein 
degradation approach, though specific degraders are still being 
developed [36]. FTO inhibitors targeting demethylase activity 
show therapeutic potential [37]. Combining m6A modulators 
with immunotherapy may create synergistic effects. Different 
risk groups have distinct pathway patterns that suggest additional 
targets. High-risk patients with activated E2F and MYC pathways 
may benefit from CDK4/6 inhibitors or BET bromodomain 
inhibitors [38, 39].

Our m6A-based framework demonstrates superior 
performance compared to existing prognostic models: 
Oncotype DX Colon (C-index ~0.68), ColoPrint (AUC ~0.66), 
and CMS classification. The superior performance (AUC = 
0.847) reflects comprehensive algorithm evaluation, 
fundamental cellular process focus, and enhanced 
interpretability through SHAP analysis.

Several limitations should be acknowledged. First, as a 
retrospective computational study, our findings require 
prospective validation and experimental confirmation in 
independent cohorts before clinical implementation. Second, 
although SHAP analysis was employed to enhance model 
interpretability, we did not develop practical clinical decision- 
support tools; the construction of a nomogram or web-based 
calculator integrating clinical variables with the m6A risk score 
will be pursued in future studies to facilitate clinical 
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implementation. Third, our cohorts predominantly comprised 
Western populations, warranting validation in ethnically diverse 
groups. Fourth, the limited cross-cancer transferability (AUC = 
0.550 in bladder cancer) indicates that our model may require 
cancer-type-specific recalibration. Fifth, bulk RNA sequencing data 
cannot capture intratumoral heterogeneity; integration with single- 
cell approaches would provide deeper insights. Sixth, 
immunotherapy response predictions were based on 
computational surrogates rather than real-world treatment 
outcomes. Finally, deep learning algorithms were excluded to 
prioritize clinical interpretability, though future studies with 
larger datasets could explore these approaches. Despite these 
limitations, our comprehensive framework provides a foundation 
for future experimental validation and clinical translation.

While our m6A-based framework demonstrates superior 
performance compared to existing prognostic models, the true 
measure of its clinical utility lies in its ability to address unmet 
needs in colorectal cancer management. The comprehensive 
evaluation of m6A regulation represents a fundamental 
advance in understanding cancer biology, but translating these 
insights into improved patient care remains the 
ultimate challenge.
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