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Abstract

Keratin 6A (KRT6A) is an epithelial-specific type Il keratin localized within
cytoskeletal intermediate filaments and functions in cooperation with
KRT16/17 to maintain epidermal homeostasis and tissue repair. Accumulating
evidence highlights its multifaceted roles in cancer. Aberrant KRT6A expression
promotes cell cycle progression, epithelial-mesenchymal transition, migration,
and invasion, thereby driving tumor initiation and metastasis, although tumor-
suppressive effects have been observed in specific contexts. Mechanistically,
KRT6A regulates adhesion, cytoskeletal remodeling, and critical signaling
pathways, thereby reshaping tumor immunity and metabolism to facilitate
immune evasion and metabolic dysregulation. Elevated KRT6A expression is
strongly associated with resistance to chemotherapy, targeted therapy, and
radiotherapy. Therapeutic approaches targeting KRT6A include nucleic acid-
based interventions, protein degradation strategies, inhibition of upstream
requlatory pathways, and combinatorial regimens to overcome drug
resistance. Clinically, KRT6A has emerged as both a diagnostic and
prognostic biomarker, supporting treatment monitoring and enhancing
predictive models for risk stratification and individualized outcome
evaluation. Beyond oncology, mutations in KRT6A underlie pachyonychia
congenita, and its dysregulation contributes to epidermal hyperproliferative
disorders such as psoriasis. Overall, systematic elucidation of the
structure—function—pathway-clinical axis of KRT6A offers new opportunities
for precision medicine and supports its potential as a therapeutic target in
cancer management.
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Impact statement

Keratin 6A (KRT6A) has emerged as a stress-inducible keratin
with multifaceted roles that extend beyond structural support. Its
dysregulation is increasingly recognized as a driver of cancer
progression, treatment resistance, and poor prognosis, while
pathogenic mutations cause inherited skin disorders such as
pachyonychia congenita. Although several studies and reviews
have broadly examined keratin biology and the contextual roles of
K6 proteins in cancer, comprehensive synthesis specifically
integrating emerging mechanistic and clinical evidence on
KRT6A across both cancer and dermatologic diseases remains
limited. This review integrates recent advances in the molecular,
cellular, and clinical aspects of KRT6A, highlighting its
contributions to cell proliferation, plasticity, immune regulation,
and cytoskeletal dynamics. By bridging findings from oncology
and dermatology, we provide insights into KRT6A as both a
pathogenic mediator and a potential therapeutic biomarker.
This work reframes KRT6A from a structural keratin to a
disease-relevant effector, thereby informing future mechanistic
research and translational applications.

Introduction

Keratin 6A (KRT6A) is a member of the type II intermediate
filament (IF) protein family, which plays a vital role in
maintaining  cytoskeletal ~integrity epithelial
homeostasis. KRT6A, together with its isoforms KRT6B and
KRT6C, forms part of the keratin 6 subfamily, which is
primarily expressed in stratified epithelia and is essential for

and tissue

processes such as squamous epithelial differentiation and
epidermalization [1-3].

Structurally, keratins assemble into obligate heteropolymers
composed of one type I (acidic, low molecular weight) and one
type II (basic to neutral, high molecular weight) keratin [1, 4, 5].
KRT6A shares the tripartite architecture typical of IF proteins,
consisting of a non-helical head domain (residues 1-162), a
central a-helical rod domain (163-476), and a non-helical tail
domain (477-564). The rod domain is subdivided into several
coiled-coil segments interspersed with linker regions, while the
head domain contains an intrinsically disordered region at its
N-terminus (residues 1-23) [6, 7].

Genetic mutations in KRT6A are implicated in various
inherited skin disorders, such as pachyonychia congenita type
I (PC-1)
keratoderma,

and focal non-epidermolytic palmoplantar

highlighting its functional importance in
epithelial integrity [8]. More recently, dysregulation of KRT6A
has been linked to carcinogenesis, potentially via effects on
mechanotransduction, cytoskeletal ~dynamics, and stress
responses. KRT6A overexpression has also been associated
with tumor aggressiveness and poor prognosis across several

cancers [9]. Although prior studies and reviews have discussed
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keratin family biology and the roles of K6 proteins, including
K6A, in cancer, analyses that integrate emerging mechanistic and
clinical evidence on KRT6A across both cancer and dermatologic
diseases remain limited [10-12]. Notably, many of these
mechanistic insights are based on limited or single-study
observations and therefore require further validation before
firm conclusions can be drawn.

In this review, we comprehensively summarize current
findings regarding the dual roles of KRT6A in both malignant
and non-malignant epithelial diseases. Specifically, we focus on
its contributions to tumor initiation, progression, metastasis,

metabolic ~ reprogramming, drug resistance, immune
modulation, and prognostic relevance. Furthermore, we
discuss the molecular mechanisms underlying KRT6A

mutations in dermatoses and explore the potential of KRT6A-
targeted strategies as future therapeutic options.

The literature included in this review was identified primarily
through comprehensive searches of PubMed, supplemented by
key studies published by major academic publishers (e.g.,
Several relevant

Elsevier, Wiley, and Springer Nature).

mechanistic studies were additionally retrieved through
manual searches of CNKI. The search covered publications up
to May 2025, with two newly published studies (June and
October 2025) incorporated during revision to maintain
currency. As this is a narrative review, no formal inclusion or
exclusion criteria were applied; however, priority was given to
influential and methodologically robust studies. In addition, we
assessed key methodological features of the included studies,
including sample size and whether in vitro findings were
validated in animal models or human specimens, to better

contextualize the strength of the available evidence.

Roles of KRT6A in cancer

Several members of the keratin family, including KRTS,
KRT17, KRT18, and KRT6A, play critical roles in cancer
biology. Dysregulation of their expression—whether through
overexpression or downregulation—is strongly linked to
cancer initiation, progression, and metastasis. However, the
strength of evidence varies considerably across tumor types
and study designs, much of the mechanistic evidence remains
preliminary, with several observations derived from single-cell
line or in vitro studies lacking in vivo validation. Although
mutations in keratin genes are relatively rare, they have been
the and advancement of

implicated  in development

certain cancers.

Pro-tumorigenic role of KRT6A

Aberrant expression of KRT6A has been reported across
multiple cancer types, often correlating with poor clinical
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outcomes. Overexpression of KRT6A has been documented in
various malignancies, including cutaneous melanoma (CM) [13,
14], head and neck squamous cell carcinoma (HNSCC) [15],
(NSCLC) [16-18], lung
[19-23], bladder cancer [24],
pancreatic adenocarcinoma (PAAD) [25], pancreatic ductal

non-small cell lung

cancer

adenocarcinoma (LUAD)

adenocarcinoma (PDAC) [26, 27], triple-negative breast
cancer (TNBC) [28], colon adenocarcinoma (COAD) [29],
and oral squamous cell carcinoma [30].

For example, Enzyme-linked immunosorbent assay (ELISA)
analysis of 54 matched tumor and margin samples from HNSCC
patients revealed significantly elevated KRT6A protein levels in
tumor tissues compared to surgical margins, with smokers
exhibiting higher tumor KRT6A expression than non-smokers
[15]. Similarly, Reverse transcription-quantitative polymerase
chain reaction (RT-qPCR) analysis of 75 NSCLC specimens
showed that KRT6A was significantly upregulated in tumors
relative to adjacent normal tissues. This upregulation correlated
with advanced Tumor-Node-Metastasis (TNM) stage, lymph
node and distant metastasis, and daily smoking status. Moreover,
high KRT6A expression predicted poorer prognosis in NSCLC
smokers, as demonstrated by survival and Cox proportional
hazards (Cox) [17]. Although these
findings suggest a potential link between KRT6A expression

regression analyses

and tumor aggressiveness, the evidence is largely correlational,
and the extent to which KRT6A contributes causally to disease
progression remains uncertain.

Functional studies provide additional but still preliminary
support for a pro-tumorigenic role. In vivo experiments using
nude mice injected with A549 lung cancer cells showed that short
hairpin  RNA (shRNA)-mediated knockdown of KRT6A
significantly reduced tumor volume and weight compared to
controls. Immunohistochemical staining indicated decreased
Ki67-positive proliferative cells in KRT6A-knockdown tumors,
consistent with in vitro findings demonstrating impaired tumor
cell proliferation [17]. While these findings indicate that KRT6A
may influence proliferation in specific experimental contexts,
they are derived from single-cell-line models with relatively small
sample sizes and require validation across additional systems and
in human tissues.

Genetically, a novel tumor-specific variant of KRT6A
(c.1048_1049delGGinsCG, p.Ala350Arg) was reported in a
single hepatocellular carcinoma (HCC) patient. Although this
mutation was absent from major genomic databases such as
Single Nucleotide Polymorphism database (dbSNP) and
Catalogue Of Somatic Mutations In Cancer (COSMIC),
indicating it may represent a rare

or previously

uncharacterized alteration, its functional and clinical
significance remains speculative given the single-case evidence
and lack of experimental validation [31]. In addition, KRT6A
mutations (e.g., ¢.745T>C) have been recurrently detected in

peripheral blood granulocytes

myeloproliferative neoplasm (MPN) patients with secondary

of Philadelphia-negative
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cancers (SCs). Unlike the predominantly solid tumor-
associated KRT6A mutations cataloged in COSMIC, this
observation raises the possibility of KRT6A involvement in
the OncodriveCLUST, a
clustering-based driver mutation analysis algorithm, further

hematopoietic ~ compartment.
indicated a stronger mutation-clustering signal for KRT6A
than for the canonical JAK2V617F mutation in MPN-SC
granulocytes, suggesting a potential inflammation-associated
[32].
clustering-based driver prediction relies on computational

mechanism in SC pathogenesis However, because
modeling and is sensitive to sample size and algorithmic
should be
considered preliminary. Although they suggest potential
oncogenic or KRT6A
the largely

associative, underscoring the need for validation in larger

assumptions, these mutation-related findings

inflammation-associated roles for

mutations, evidence remains limited and
cohorts and through mechanistic studies.

Overall, the current understanding of KRT6A’s pro-
tumorigenic potential is shaped predominantly by in vitro
studies, limited animal experiments, and bioinformatic
analyses. While available data indicate possible roles in
promoting malignant phenotypes, stronger evidence from
mechanistic studies and large, well-characterized clinical
cohorts is needed to clarify whether KRT6A acts as a
functional driver, a context-dependent modulator, or simply a

biomarker of tumor progression.

Role of KRT6A in cancer cell
metastasis

Building upon its established role in tumor growth, KRT6A
has also been implicated in cancer cell migration, invasion, and
metastasis across various cancer types. In vitro studies have
demonstrated that KRT6A knockdown significantly reduces
migratory and invasive capabilities in several cancer cell lines.
For instance, small interfering RNA (siRNA)-mediated silencing
of KRT6A in A549 lung cancer cells inhibited both migration
(wound-healing assay) and invasion (Transwell assay) [18].
Similar findings were observed in HCC827 lung cancer cells.
KRT6A knockdown reduced cell viability and proliferation, as
demonstrated by the Cell Counting Kit-8 (CCK-8), colony
formation, and 5-ethynyl-2’-deoxyuridine (EdU) assays. It also
suppressed cell invasion [20]. In colon cancer HCT116 cells,
knockdown of KRT6A impaired proliferation, migration, and
invasion, while its overexpression enhanced these malignant
phenotypes. DLD-1 with KRT6A
exhibited stronger migration and three-dimensional (3D)

cells overexpression
invasive activity, particularly at the tumor invasive front,
correlating with tumor budding and poor differentiation [33,
34]. These phenotypic effects, however, have been demonstrated
primarily in cell-line models, and their relevance in more
physiological systems remains to be determined.

Published by Frontiers
Society for Experimental Biology and Medicine


https://doi.org/10.3389/ebm.2026.10845

Su et al.

KRT6A also modulates key signaling pathways involved in
metastasis. In NSCLC cell lines, KRT6A may act downstream of
lysine-specific demethylase 1 (LSD1) and promote invasion
through ¢-MYC (MYC proto-oncogene protein) and MYCN
(MYC
upregulation of glucose-6-phosphate dehydrogenase (G6PD),

proto-oncogene, neuroblastoma-derived)-driven
thereby potentially activating the pentose phosphate pathway
(PPP) [16]. Additionally, it has been reported to promote
radioresistance, invasion, and metastasis in lung cancer, with
pathway enrichment analyses suggesting possible involvement of
the p53 signaling pathway [18]. In nasopharyngeal carcinoma cell
KRT6A
metalloproteinases-2/9 (MMP-2/9) and [-catenin signaling

models, silencing downregulated matrix
components, while increasing E-cadherin and tissue inhibitor
of metalloproteinases-2 (TIMP-2). These molecular changes are
consistent with a reversal of epithelial-mesenchymal transition
(EMT). Activation of the Wnt/B-catenin pathway rescued these
effects, suggesting that KRT6A may promote invasion and
metastasis through [-catenin signaling [35]. Nevertheless,
most of these pathway connections are inferred from single
in vitro studies and enrichment analyses, and causal
relationships remain to be experimentally validated.

KRT6A may be involved in EMT and cancer stem cell (CSC)
maintenance. In lung adenocarcinoma (LUAD) cells, KRT6A
knockdown increased epithelial markers (E-cadherin, -catenin)
and reduced mesenchymal markers (N-cadherin, vimentin). It
the CSC

colony-forming

also  significantly  decreased
(CXCR4high/CD133high)
suggesting a potential role in EMT and CSC-associated

subpopulation
and capacity,
phenotypes [19]. While these findings are mechanistically
suggestive, they are derived almost entirely from LUAD cell
models, and their generalizability to other cancer types
remains unclear.

Beyond lung and colon cancer, KRT6A may contribute to
bladder cancer progression, partly as a target of microRNA-31-
5p (miR-31-5p). Low levels of this microRNA result in
upregulation of KRT6A, promoting tumor cell proliferation,
adhesion, and invasion [24]. In gastric adenocarcinoma,
mitogen-activated protein kinase 1 (MAPK1) was shown to
transcriptionally regulate KRT6A expression, facilitating AGS
(human gastric adenocarcinoma) cell motility and invasion [36].
Similarly, dexamethasone-induced upregulation of KRT6A
enhanced pancreatic cancer cell migration and invasion [37].
Importantly, these regulatory interactions arise from isolated
studies across different cancer types, and their generalizability
remains unclear.

Transcriptomic and proteomic analyses suggest that KRT6A
exhibits divergent associations with melanoma progression.
Elevated KRT6A expression in primary melanomas was
associated with thinner tumors (Breslow thickness) but poorer
survival in metastatic disease. As part of the epidermal
(EDC), KRT6A
correlated—based on transcriptomic and reverse-phase protein

differentiation ~ complex expression
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array (RPPA) analyses—with EMT signatures and activation of
mitogen-activated protein kinase kinase (MEK), epidermal
growth factor receptor (EGFR), and activating transcription
factor-2 (ATF2) pathways. These findings suggest that KRT6A
may contribute to molecular networks that facilitate metastasis
and invasion [14]. Moreover, these associations are primarily
correlative—based on transcriptomic and RPPA analyses—and
functional evidence supporting direct mechanistic involvement
remains limited.

Collectively, these findings suggest that KRT6A may function
as a multifunctional regulator of tumor metastasis, operating
through EMT, CSC regulation, and diverse oncogenic pathways,
as illustrated in Figure 1, although most supporting evidence
comes from in vitro studies, single-model systems, or correlative
transcriptomic analyses, highlighting the need for further
mechanistic and in vivo studies to validate these proposed roles.

Potential anti-tumor roles of KRT6A

While numerous studies support the pro-tumorigenic role of
KRT6A, a few isolated reports suggests it may exert anti-tumor
effects under certain contexts. In LUAD, KRT6A overexpression
inhibited cell proliferation, migration, and invasion, as shown by
CCK-8, colony formation, wound-healing, and Transwell assays.
Furthermore, immunohistochemical analysis revealed that
higher KRT6A protein levels were associated with improved
patient prognosis [38]. These findings, while informative, are
based primarily on in vitro assays and a commercially sourced
tissue microarray, and have not yet been independently validated
or confirmed in vivo, making their broader relevance uncertain.

Interestingly, a prior study from the same research group
reported that elevated KRT6A mRNA expression predicted poor
prognosis in LUAD patients based on analyses of public
transcriptomic datasets [39]. This discrepancy between mRNA
and protein-level findings suggests possible post-transcriptional
regulatory mechanisms—most notably, microRNA-mediated
suppression of translation. These findings highlight the need
for further investigation into the context-dependent and
regulatory complexity of KRT6A function in cancer.

In addition to post-transcriptional regulation, several
biological factors may contribute to the context-dependent
behavior of KRT6A. First, isoform-specific functions may
drive divergent phenotypes, as distinct KRT6A splice variants
could engage different cytoskeletal partners or signaling
tumor microenvironmental

pathways. Second,

influences—including stromal composition, immune

infiltration, and extracellular stress cues—may alter KRT6A
activity or subcellular localization, thereby shaping its
functional output. Third, variation in protein stability or post-
translational modifications such as phosphorylation or
ubiquitination may further fine-tune KRT6A signaling across

tissues or disease stages. Overall, discrepancies between
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FIGURE 1

Schematic illustration of the role of KRT6A in regulating epithelial-mesenchymal transition (EMT) and malignant progression in lung
adenocarcinoma and nasopharyngeal carcinoma. Accumulating evidence indicates that KRT6A regulates EMT-associated molecular alterations and
malignant progression of cancer cells in a context-dependent manner. In lung adenocarcinoma, alterations in KRT6A expression are closely
associated with dynamic changes in epithelial and mesenchymal markers, accompanied by phenotypic plasticity and enhanced invasiveness of
cancer cells. In nasopharyngeal carcinoma, KRT6A is proposed to promote EMT-related phenotypic remodeling through activation of the Wnt/p-
catenin signaling pathway. This schematic summarizes the currently available experimental and clinical evidence and highlights putative molecular

mechanisms that require further experimental validation.

transcript-level and protein-level observations likely reflect
multilayered regulatory complexity, underscoring the need to
KRT6A defined
microenvironmental contexts.

study within cellular and

Role of KRT6A in cancer immunity

Although the immune-related functions of KRT6A remain
largely unexplored, several correlative studies suggest a potential
link between KRT6A expression and the tumor immune
microenvironment, particularly tumor-associated macrophages
(TAMs). In pancreatic ductal adenocarcinoma (PDAC), KRT6A
expression shows a strong positive correlation with the TAM
marker integrin alpha M (ITGAM/CD11b) (Pearson correlation
coefficient, r = 0.95). Co-localization of KRT6A and ITGAM in
tumor tissues was reported based on immunofluorescence and
immunohistochemistry (IHC); however, these findings are
descriptive in nature and do not establish cell-type specificity,
functional interaction, or causal relationships. Gene co-
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expression network analysis further suggested that KRT6A
may be linked to TAM-associated gene modules such as
COL5A2, COL1A2, and SPARC, which are enriched in
extracellular matrix remodeling, MAPK/Wnt signaling, and
antigen presentation pathways [26]. Additionally, Cell type
Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT)-based immune profiling indicated
that high KRT6A expression in PDAC tissues is associated
with increased infiltration of M2-polarized macrophages,
supporting a potential link with an immunosuppressive
microenvironment [40]. Taken together, these findings point
to a potential association between KRT6A and TAM-related
immunosuppression in PDAC, although mechanistic causality
has not yet been established.

Beyond macrophages, KRT6A may also influence innate
immune responses. It has been implicated in the regulation of
antimicrobial peptides (AMPs) [41], which could indirectly affect
immune cell recruitment. Moreover, in granulocytes,
ginsenoside Rgl treatment was shown to upregulate KRT6A

along with laminin subunit gamma-2 (LAMC2), desmocollin-2
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(DSC2), and FosB proto-oncogene (FOSB), reversing
noradrenaline-induced immunosuppression and restoring

their cancer-killing activity [42]. These observations were
made in specific experimental systems, and their relevance to
PDAC biology or in vivo immunity remains to be clarified.

Together, these studies suggest that KRT6A may influence
tumor progression not only through intrinsic cancer cell
pathways but also through interactions with the tumor
immune microenvironment. Nevertheless, current evidence is
preliminary, largely correlative, and highly context-specific.
Definitive mechanistic studies—particularly those examining
macrophage-tumor cell crosstalk, cell-type specificity, and in
vivo immune modulation—are needed to determine whether
KRT6A functions as an immune regulator or represents a
potential target in PDAC immunotherapy.

Role of KRT6A in tumor metabolism

Although most studies focus on the structural and
signaling functions of KRT6A, emerging evidence suggests
its  possible  involvement in  tumor  metabolic
reprogramming, although current findings remain limited
and largely model-specific. In adenocarcinoma
A549 cells, KRT6A expression

chloride (CoCl,)-induced hypoxia in parallel with elevated

lung
increases under cobalt

hypoxia-inducible factor 1-alpha (HIF1A) levels, whereas
this pattern is not observed in PC9 cells, indicating a
potential cell-line-specific response. HIFIA is a master
regulator of cellular adaptation to hypoxia and a key driver
of metabolic shifts in tumors, and this context raises the
possibility that KRT6A expression may be linked to
hypoxia-related cellular responses [23]. Nevertheless, the
evidence is derived from a single in vitro system, and no
studies have investigated whether KRT6A directly modulates
HIF1A activity or downstream metabolic pathways.

In addition, a single study suggests that KRT6A may be
involved in metabolic reprogramming through regulation of the
pentose phosphate pathway (PPP). Experiments in non-small
cell lung cancer (NSCLC) cell lines suggest that KRT6A, acting
downstream of LSD1, may enhance c-MYC/MYCN-mediated
transcription of glucose-6-phosphate dehydrogenase (G6PD),
the rate-limiting enzyme of the PPP. Such changes could
potentially increase nicotinamide adenine dinucleotide
phosphate (NADPH) production and anabolic biosynthesis,
thereby supporting tumor growth, invasion, and redox
homeostasis [16]. Nonetheless, these findings are primarily
based on in vitro NSCLC cell-line experiments and currently
lack in  wvivo validation. Moreover, the proposed
LSD1-KRT6A-MYC-G6PD axis is supported by only one
study and has not yet been corroborated by metabolic flux
or clinical  evidence, its ~ broader

assays leaving

relevance uncertain.
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Taken together, these findings suggest that KRT6A may
influence cancer cell metabolic pathways, potentially involving
hypoxia-related signaling and PPP activity. However, these
connections are primarily supported by in vitro evidence, and
further research is needed to determine whether KRT6A
functions as a broader metabolic modulator across different
tumor types.

Role of KRT6A in drug resistance

Drug resistance remains a major challenge in effective cancer
therapy, and emerging evidence suggests that KRT6A expression
both
chemotherapeutic and targeted agents in several cancer

is associated with reduced responsiveness to
contexts. However, the mechanistic basis of this association
remains incompletely understood. In NSCLC, in vitro
experiments showed that KRT6A knockdown in HI1299 and
HCC827 cells increased their sensitivity to mitoxantrone and
oxaliplatin, indicating that KRT6A may modulate chemotherapy
responsiveness [43]. Similarly, in cisplatin-resistant cervical
cancer cells (SiHa/DDP), downregulation of KRT6A impairs
cell proliferation, promotes apoptosis, and enhances cisplatin
sensitivity, implicating KRT6A as a potential therapeutic target to
reverse platinum resistance [44]. However, these findings rely on
short-term in vitro assays, and whether KRT6A directly
modulates chemoresistance mechanisms remains unclear.
Beyond traditional chemotherapy, KRT6A has also been
implicated in resistance to targeted therapies. In liver kinase Bl
(LKB1)-deficient, KRAS-mutant NSCLC, studies in mouse models
and organoids show that epigenetic activation of the C40 enhancer
induces ANp63 and downstream KRT6A expression, driving
adeno-to-squamous transition (AST). This phenotypic switch
enables tumors to bypass KRAS dependency and confers
resistance to KRAS inhibitors such as Adagrasib (G12C) and
MRTX1133 (G12D). Consistently, patient biopsy data indicate
that high KRT6A expression is associated with poor response and
unfavorable prognosis [45]. Although the evidence is stronger due
to cross-model consistency, direct functional validation of KRT6A
as a driver of AST-mediated resistance is still limited.
Furthermore, KRT6A is identified as a core gene in a
machine learning model for acquired resistance to EGFR-
tyrosine kinase inhibitors (EGFR-TKIs; e.g., gefitinib, erlotinib,
afatinib) and cetuximab, suggesting a potential broader
involvement in resistance to anti-EGFR therapies [46]. As this
conclusion is mainly based on computational modeling,
of  KRT6A’s
contribution to anti-EGFR resistance is still lacking.

experimental  confirmation functional

Collectively, current evidence suggests that KRT6A may
contribute to diverse forms of therapy resistance across
multiple cancer types; however, most available data are
derived from isolated in vitro studies or computational

predictions. Robust in vivo experiments and mechanistic
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investigations are still lacking, and no causal link between
KRT6A and drug resistance has been firmly established.
Therefore, while KRT6A represents an intriguing candidate
for therapeutic targeting, its functional role in treatment
resistance requires substantially more experimental validation.

Role of KRT6A in radiation resistance

KRT6A has been implicated in the development of
radioresistance in non-small cell lung cancer (NSCLC),
although current evidence remains limited and largely
context-dependent. In A549-derived radiation-resistant cells
(A549-RR), KRT6A expression is markedly elevated, and its
silencing enhances radiosensitivity. Mechanistically, Western
blot analysis shows that B-catenin levels decline after KRT6A
knockdown, whereas [-catenin overexpression rescues both
EMT phenotypes and radiation resistance, supporting the
involvement of the Wnt/B-catenin-EMT axis. However, these
mechanistic data are derived from in vitro assays only and have
not yet been validated in vivo [47].

In support of these findings, The Cancer Genome Atlas
(TCGA) RNA
squamous cell carcinoma (LUSC) patients revealed KRT6A as
the the
radiosensitivity index (RSI) group compared to the high RSI

sequencing (RNA-seq) data from lung

most significantly upregulated gene in low
group [48], although this correlation does not imply a causal
relationship between KRT6A expression and radiosensitivity.

Additionally, KRT6A may influence radiation response by
modulating pathways such as p53 signaling and G2/M cell-cycle
regulation—both of which are linked to DNA damage repair and
tumor cell survival under irradiation stress. These associations
are derived from public database analyses, and the underlying
mechanisms require further validation in cellular and
animal models [18].

Taken together, existing evidence suggests that KRT6A
expression is associated with reduced radiosensitivity in
NSCLC and may serve as a potential biomarker of radiation
response. However, whether KRT6A functions as a direct
mediator of radioresistance or represents a surrogate marker of
resistant tumor states remains unresolved. Further in vivo and
mechanistic studies are required before KRT6A can be considered

a viable therapeutic target in the context of radiotherapy.

Targeting KRT6A: drugs and
therapeutic strategies

Several studies have explored pharmacological approaches
that may modulate KRT6A expression or function, although
direct targeting of KRT6A remains largely conceptual and has
not yet been broadly validated. Sinapine thiocyanate (ST) exerts
anti-tumor activity in colorectal cancer (CRC) partly by
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suppressing the KRT6A/S100A2 axis, with SI00A2 (a calcium-
binding protein of the S100 family) serving as a downstream
mediator. In CRC cell lines, ST decreases KRT6A mRNA and
protein expression and inhibits cell proliferation and migration.
In vivo, ST similarly reduces tumor growth in xenograft models.
Rescue experiments further show that overexpression of KRT6A
counteracts ST-induced inhibition of malignant phenotypes,
supporting KRT6A as a functional target of ST. Consistent
with these findings, elevated KRT6A/SI00A2 expression
correlates with poorer prognosis in CRC patients [49].
However, these findings are restricted to CRC models, and it
remains unclear whether ST exerts comparable KRT6A-
dependent effects in other tumor types or whether KRT6A is
the primary molecular target of ST.

Taxifolin, a natural flavonoid, was identified as a candidate
therapeutic agent through Connectivity Map (CMAP) analysis.
This prediction was derived from a weighted gene co-expression
network analysis (WGCNA) module in which KRT6A was one of
11 hub genes associated with poor prognosis across multiple
cancer types [25]. However, this prediction is based on
transcriptomic similarity rather than functional validation, and
a direct mechanistic link between taxifolin and KRT6A
regulation has not been experimentally confirmed.

Additionally, KRT6A has been reported as a gene associated
with progression from Barrett’s esophagus (BE) to esophageal
adenocarcinoma (EAC). Bioinformatics analysis using the
Drug-Gene Interaction Database (DGIdb) predicted TD101,
an siRNA previously used for pachyonychia congenita, as a
potential KRT6A-targeting therapeutic agent, although its
efficacy in EAC remains to be experimentally validated [50].

Collectively, existing studies nominate KRT6A as a potential
therapeutic vulnerability; however, no KRT6A-directed agents
have yet demonstrated consistent efficacy across cancer models
or advanced toward clinical translation. Rigorous mechanistic
studies, validation in diverse tumor systems, and preclinical
evaluations are required to determine whether KRT6A
represents a viable and druggable target in oncology.

KRT6A as a diagnostic and
therapeutic biomarker in cancer

KRT6A is emerging as a versatile biomarker across multiple
cancer types. Its expression is significantly higher in lung
cell (LSCC)
adenocarcinoma (LUAD), making it a potential diagnostic

squamous carcinoma compared to lung
marker to distinguish these lung cancer subtypes [39, 51-53].
Proteomic analyses of exhaled breath condensate (EBC) further
reported elevated KRT6A levels in lung cancer patients relative to
controls, smokers, and Chronic Obstructive Pulmonary Disease
(COPD) patients, suggesting promise for noninvasive early
detection [54]. However, this conclusion is based on a small

cohort from a single center, which constrains its broader
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TABLE 1 KRT6A expression and prognostic significance across cancer types.

Cancer

Sample size

NSCLC [13] | TCGA:
483 LUAD/486 LUSC
Clinical THC: 30

T mRNA & protein

LUAD [20] | TCGA: T
535 tumors/59 normals

PDAC [34] Clinical THC: 130 T

TCGA-PAAD: 177

PDAC [24] = TCGA-PAAD: 1
178 tumors/171 normals

7 paired cases

CRC [31] Clinical THC: 142

348 validation

TInvasive front vs. center

CM [10] GEO: 99 CM vs 45 nevi
TCGA: 475 CM

Clinical ITHC: 31 CM vs 31 nevi

TMelanoma vs. nevus

BLCA [21] TCGA: 7
404 tumors vs. 28 normals

Expression tumor vs. normal

10.3389/ebm.2026.10845

Prognostic of high KRT6A oS

HR (95% CI)

Worse OS 1.491 0.016
Worse 1.156 (1.097-1.223) = <0.001
OS/DSS/PFI

Worse 2.704 (1.374-5.320) 0.004
OS/DES

Worser OS 1.09 (1.04-1.14) 0.00037

Worse OS/DSS/PES 3.081 (1.653-5.740) 0.0004

Worse OS 1.07 (1.037-1.103) <0.001

Worse OS 1.42 (1.05-1.93) 0.023

Abbreviations: NSCLC, non-small cell lung cancer; LUAD, lung adenocarcinoma; PDAC, pancreatic ductal adenocarcinoma; CRC, colorectal cancer; CM, cutaneous melanoma; BLCA,
bladder cancer; LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; THC,
immunohistochemistry; OS, overall survival; DSS, disease-specific survival; DFS, disease-free survival; PFS, progression-free survival; PEI, Progression-Event Interval; HR, hazard ratio.

“1” Indicates higher KRT6A expression in tumor tissues or in aggressive tumor subsets.

References: NSCLC [13]; LUAD [20]; PDAC [24, 34]; CRC [31]; CM [10]; BLCA [21].

generalizability. Moreover, KRT6A expression correlates with
smoking exposure and has been proposed as a potential early
diagnostic biomarker in smoking-related NSCLC [17], although
prospective validation is still lacking.

Beyond lung cancer, KRT6A has also been implicated in
other malignancies. It serves as a characteristic biomarker for
basal-subtype bladder cancer [55, 56], and its expression is
significantly higher in progesterone receptor B-high (PRB-H)
breast tumors than in progesterone receptor A-high (PRA-H)
tumors [57]. These associations, however, are mostly derived
from retrospective datasets and have not been systematically
examined in larger, clinically annotated cohorts.

Collectively, available evidence suggests that KRT6A may
serve as a diagnostic or subtype-associated biomarker in several
cancer contexts. Nevertheless, its clinical utility remains
exploratory, and rigorous validation in large, multicenter
studies—ideally with standardized assays and longitudinal
follow-up—will be required before KRT6A can be adopted for
routine clinical use.

Prognostic biomarker correlation
with poor outcomes

KRT6A expression has been consistently reported to
correlate with tumor progression and poor prognosis across
multiple cancer types, although the strength and consistency

Experimental Biology and Medicine

of these associations vary by tumor context and disease stage. In
non-small cell lung cancer (NSCLC), particularly lung
adenocarcinoma (LUAD), KRT6A overexpression is associated
with aggressive clinicopathological features such as lymph node
metastasis, advanced T stage, and worse overall survival (OS) and
recurrence-free survival (RES) [16, 18, 19, 23]. However, this
correlation appears less clear in early-stage NSCLC [51]. In
conjunction with LSD1, KRT6A may serve as a candidate
prognostic  indicator, with potential implications for
therapeutic targeting in NSCLC [16]. To provide an integrated
snapshot across tumor types, we compiled representative studies
reporting KRT6A expression and its prognostic associations in
major cancers (Table 1).

In pancreatic ductal adenocarcinoma (PDAC), elevated
KRT6A expression is an independent predictor of poor OS
and disease-specific survival (DSS), particularly in poorly
differentiated tumors, reflecting its link to malignant
phenotypes and tumor aggressiveness [26, 27, 37, 58, 59].
KRT6A has also been linked to alterations in the tumor
immune microenvironment, particularly through associations
with TAM-related pathways [26], however, these observations
are primarily correlative.

In colorectal cancer (CRC), KRT6A has been identified as an
independent prognostic factor for OS, DSS, and progression-free
survival (PFS), correlating with lymph node metastasis and
tumor stage [29, 34]. Interestingly, metastatic microsatellite
instability-high (MSI-H) CRC tumors show reduced KRT6A
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expression compared to non-metastatic cases, suggesting
subtype-specific roles [60].

High KRT6A levels have been reported to associate with
advanced disease and poor prognosis in melanoma [13] and
bladder cancer [24]. In papillary thyroid microcarcinoma
(PTMC), elevated expression of CK5/6 (encoded by KRT5/
KRT6A) predicts central lymph node metastasis, supporting
its utility as a predictive biomarker [61]. Furthermore, an
aggressive basal-like tumor cell subpopulation expressing
KRT6A, KRT5, and KRT17 correlates with poor outcomes in
intrahepatic cholangiocarcinoma (ICC) [62].

Collectively, these studies suggest that KRT6A expression is
frequently associated with adverse prognosis across diverse
malignancies. Nevertheless, existing prognostic evidence is
derived from heterogeneous study designs, retrospective
cohorts, and variable analytical methodologies. As such,
KRT6A should currently be regarded as a candidate prognostic
biomarker rather than a validated clinical indicator, and
prospective, standardized studies will be required to define its
independent prognostic value and potential clinical utility.

KRT6A as a core component of
predictive risk models

Multigene prognostic models have emerged as valuable tools

in predicting cancer outcomes alongside traditional

KRT6A, which harbors
mutations across various cancers [21], is frequently included

clinicopathological ~ parameters.
in these models. However, its inclusion should be interpreted as a
statistical contributor rather than definitive evidence of causal
biological centrality.

In triple-negative breast cancer (TNBC), KRT6A is
consistently  incorporated  into  multiple  prognostic
signatures—such as a 6-gene risk model, a necroptosis-related
7-gene model, and a senescence-associated  4-gene
model—where it serves as a high-risk indicator linked to poor
survival [28, 63]. Notably, the necroptosis-related model not only
predicts survival but also explores potential therapeutic
stratification based on predicted drug-response patterns, as
reflected by estimated half-maximal inhibitory concentration
(IC50) differences for cisplatin and lapatinib. A corresponding
nomogram further demonstrates reasonable discriminative
performance (AUC >0.84) [64]. Nevertheless, these findings
are derived from retrospective analyses and predictive
modeling rather than prospective therapeutic validation.

In pancreatic ductal adenocarcinoma (PDAC), 5-gene
that KRT6A  predict

independently. These signatures link KRT6A to immune

models include overall survival

regulation, vascular invasion, and aggressive squamous

subtypes, providing further evidence for its role as a
malignancy-associated factor [65, 66], but they remain

primarily correlative and model-dependent.
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In lung adenocarcinoma (LUAD), KRT6A is embedded in a
wide array of predictive models—such as those related to fatty
acid metabolism [20], autophagy [67], tumor microenvironment
(LATPS) [68], genomic instability (GSAGI) [69], DNA damage
(DDR) [70], lymph node metastasis [71], RNA
modification (RMScore) [72], TEAD4 (TEA domain
transcription factor 4)-related pathways [73], pyroptosis [74],

repair

liquid-liquid phase separation (LLPS) [75], and ferroptosis [76].
Across these models, high KRT6A expression or inclusion in
high-risk groups consistently correlates with worse outcomes
(OS, DFS, or RFS). Additionally, KRT6A appears in independent
5- and 13-gene models [77, 78]. The breadth of its inclusion likely
reflects its strong correlation with aggressive tumor states rather
than pathway-specific causality.

In colorectal cancer (CRC), KRT6A functions as a key
component of a validated 5-gene prognostic signature,
showing independent predictive power across The Cancer
Genome Atlas (TCGA), GSE39582, and GSE17538 cohorts for
overall survival (OS), disease-free survival (DFS), and disease-
specific survival (DSS). Enrichment analysis links the KRT6A-
containing signature to extracellular matrix remodeling,
particularly collagen-containing matrix pathways, which are
commonly associated with tumor progression [33].

Collectively, these studies indicate that KRT6A is frequently
incorporated into multigene prognostic models and consistently
associated with adverse clinical outcomes. However, most
existing models are derived from retrospective datasets and
employ heterogeneous feature-selection and validation
pipelines, raising concerns regarding overfitting and cross-
study comparability. Accordingly, KRT6A should be viewed as
a recurrent statistical risk-associated marker rather than a
validated standalone predictor, and prospective validation will

be essential to establish its clinical utility.

Emerging roles of KRT6A in HPV-
related tumors and immunotherapy

Recent studies indicate that KRT6A, previously viewed
mainly as a cytoplasmic structural keratin, can also localize to
the nucleus in human papillomavirus 16 (HPV16)-positive
Nuclear KRT6A interacts with TEA
domain (TEAD) transcription factors and is recruited to the

cervical cancer cells.

HPV long control region, supporting E6/E7 transcription and
promoting tumor cell proliferation. Loss-of-function and rescue-
of-function studies indicate that KRT6A contributes to the
maintenance of HPV E6/E7 expression [79]. Although these
observations were generated in HPV16-positive squamous
carcinoma cell lines and require validation across other high-
risk HPV genotypes and primary tumor settings, they highlight
an emerging interface between keratin biology and viral
transcriptional programs, suggesting that aberrant KRT6A
activity may contribute to HPV-driven carcinogenesis.
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TABLE 2 KRT6A mutations in pachyonychia congenita (PC-K6a): functional and therapeutic implications.

Variant (protein) Frequency Functional impact Therapeutic notes
in PC
p-Asn172del 10.9% Disrupts helix-initiation motif; induces cytoskeletal fragility Symptomatic care; limited response to
retinoids;
p-Vall81_GIn186del 3% Alters L12 linker; reduces filament flexibility; weakens cytoskeletal Case-dependent EGFR/mTOR inhibitor
network responses;
Emerging siRNA approaches; no mutation-
p.Glu472Lys 2% Disrupts helix-termination motif; impairs filament maturation specific evidence
p.-Asnl71Lys 1.6% Destabilizes helix-initiation motif; impairs filament assembly
p.Leu469Pro 1.2% Disrupts helix-termination motif; impairs filament stabilization and
maturation; induces cytoskeletal fragility

Representative KRT6A variants in PC-K6a. Variant nomenclature follows HGVS guidelines; mutation data are referenced from the International Pachyonychia Congenita Research

Registry. EGFR, epidermal growth factor receptor; mTOR, mechanistic target of rapamycin; siRNA, small-interfering RNA.

Pan-cancer analyses link KRT6A to immune checkpoint
pathways. In syngeneic immunotherapy models, KRT6A
expression increased in responders to anti-cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4) therapy, but
decreased in non-responders receiving combined anti-CTLA-
4 and anti-programmed cell death protein 1 (PD-1) treatment,
whereas no significant changes were observed with other
blockade (ICB) These

observations suggest that KRT6A expression dynamics may

immune checkpoint regimens.
reflect treatment-specific immune responses rather than
serving as a universal immunotherapy biomarker.

In parallel, drug-response profiling (CTRP/GDSC) further
showed that high KRT6A expression was associated with greater
sensitivity to several EGFR/HER (ErbB) family inhibitors [12].
However, these associations are derived from large-scale

pharmacogenomic correlations and do not establish a direct

mechanistic role for KRT6A in modulating immune
checkpoint efficacy or targeted therapy response.
Collectively, these emerging findings expand the

functional landscape of KRT6A to include potential roles in
HPV-driven oncogenesis and therapy-associated immune
contexts. Nevertheless, most supporting evidence remains
correlative or model-specific, and further mechanistic and
clinical validation will be required to determine whether
KRT6A functions as an active regulator or a context-
biomarker in and virus-

dependent immunotherapy

associated cancers.

KRT6A in dermatoses

KRT6A is a type II intermediate filament protein encoded by
the KRT6A gene located on chromosome 12q13.13 [3]. Under
normal conditions, KRT6A is selectively expressed in specialized
epithelial tissues such as the palmar/plantar epidermis, nail bed,
hair follicle, and oral mucosa [80, 81]. Upon epithelial injury,
mechanical stress, or inflammatory stimulation, KRT6A
expression is rapidly and robustly induced [82]. This response
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is mediated by signaling cascades involving pro-inflammatory
cytokines (e.g., IL-1, TNF-a), growth factors, and transcriptional
regulators (e.g., NF-kB, AP-1) [83]. However, the relative
contribution of these pathways may vary depending on tissue
context and experimental conditions.

Functionally, KRT6A enhances epithelial resilience against
mechanical trauma and facilitates wound healing by supporting
keratinocyte proliferation and migration [11, 84]. These roles are
primarily supported by experimental models of skin injury and
keratinocyte culture systems, and the extent to which they
generalize across different epithelial tissues remains to be fully
elucidated.

In pathological conditions, such as inflammatory skin
diseases (e.g., psoriasis, lichen planus) and inherited keratin
disorders, this inducible expression becomes dysregulated [3].
Aberrant KRT6A upregulation contributes to hyperproliferative
phenotypes and epidermal barrier dysfunction [10]. Moreover,
mutations in KRT6A are causally linked to pachyonychia
congenita type I, a rare genodermatosis characterized by
painful palmoplantar keratoderma, nail dystrophy, and oral
[85]. These findings underscore KRT6A’s
pivotal role not only in epithelial homeostasis but also in the

leukokeratosis

pathogenesis of diverse dermatoses.

KRT6A in pachyonychia congenita

Pachyonychia Congenita (PC) is a rare autosomal dominant
genodermatosis caused by mutations in genes encoding stress
keratins, with KRT6A mutations accounting for approximately
30% of all PC cases (PC-K6a subtype) [85, 86]. According to data
from the International Pachyonychia Congenita Research
Registry (IPCRR), over 50 pathogenic variants of KRT6A have
been documented—most of them being missense mutations (e.g.,
p.Asnl71Lys, p.Argl62Pro), as well as deletions, insertions, and
splice site alterations. These mutations predominantly affect the
helix initiation and termination motifs critical for keratin
filament assembly.
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Schematic illustration of the KRT6A-mediated inflammatory signaling mech
imiquimod (IMQ)-induced mouse model, KRT6A is markedly upregulated in

anism in psoriatic dermatitis. In psoriatic lesions and in the
epidermal keratinocytes in response to inflammatory stimuli. Elevated

KRT6A may sustain activation of the JAK1-STAT3 signaling pathway by inhibiting RNF41-mediated ubiquitination and subsequent degradation of

JAK1, thereby promoting the production of pro-inflammatory cytokines, ab
function, and amplification of cutaneous inflammation. This schematic mod

Mutant KRT6A proteins impair cytoskeletal integrity by
disrupting filament organization, leading to cellular fragility
and mechanical stress sensitivity [87]. The accumulation of
misfolded keratin proteins triggers endoplasmic reticulum (ER)
stress, activating c-Jun N-terminal kinase (JNK) and p38 mitogen-
activated protein kinase (p38 MAPK) signaling pathways and
promoting cellular stress responses [88]. In addition, mutant
KRT6A induces dysregulated apoptosis via enhanced caspase-3
activation in basal keratinocytes [89]. Compensatory upregulation
of KRT6A and KRT16 aggravates the pathology by driving
keratinocyte hyperproliferation and impaired differentiation,
contributing to disease progression [90].

Clinically, PC is characterized by a triad of focal
palmoplantar keratoderma, hypertrophic nail dystrophy, and
debilitating plantar pain. Other manifestations may include
follicular hyperkeratosis, oral leukokeratosis, natal teeth,
sebaceous cysts, hidradenitis suppurativa, hoarseness, and
itching [85, 86, 91, 92]. Among patients with PC-K6a
mutations, painful plantar keratoderma is often reported as
the most debilitating and treatment-resistant symptom [91].

Currently, no definitive cure exists for PC, and management
remains Conservative include

symptomatic. approaches

reducing plantar trauma, mechanical debridement, and
application of topical keratolytic agents [93, 94]. Some
patients benefit from oral retinoids [95], while botulinum

toxin injections into the plantar region have been shown to
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errant activation of keratinocytes, impairment of skin barrier
el is primarily supported by evidence from in vitro and animal studies.

alleviate pain, callus formation, and blistering [96-98]. Oral
statins have also demonstrated efficacy in reducing callus
thickness and pain levels in select patients [99-102].

Emerging targeted therapies are under exploration. A
summary of representative KRT6A variants in PC-K6a and
their mechanistic and therapeutic implications is provided in
Table 2. These include small-molecule inhibitors, mechanistic
target of rapamycin (mTOR) pathway modulators [103, 104],
and gene therapy strategies such as small interfering RNA
(siRNA) targeting KRT6A [105-107]. Notably, EGFR inhibitors
(e.g., erlotinib, lapatinib) have been reported in individual cases to
alleviate plantar hyperkeratosis and pain [108, 109]. Additionally,
sunitinib, a multi-target tyrosine kinase inhibitor, was found to
reduce KRT6A and serine protease inhibitor B1 (SERPINBI)
expression in vitro by inhibiting extracellular signal-regulated
kinase 1/2 (ERK1/2) and p38 MAPK signaling [110], suggesting
a potential future therapeutic avenue. These findings are
preliminary and largely based on case reports or experimental
models, underscoring the need for systematic clinical evaluation.

KRT6A in psoriatic dermatitis

KRT6A expression is significantly upregulated in psoriasis-
like dermatitis, contributing to disease development through
multiple mechanisms [111-113].
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Schematic representation of the upstream regulation, molecular mechanisms, and clinical significance of KRT6A. Inflammatory signals (e.g.,
TNF-q, IL-1pB) and the epigenetic regulator LSD1 can upregulate KRT6A expression. KRT6A is involved in multiple biological processes, including
pachyonychia congenita and psoriatic dermatitis, partly via the STAT3 pathway, and is associated with ferroptosis and inflammatory responses.
Clinically, KRT6A is closely linked to the development and progression of various cancers, and contributes to both chemotherapy and
radiotherapy resistance. It holds potential as a diagnostic and prognostic biomarker.

In clinical psoriatic specimens and imiquimod (IMQ)-
induced mouse models, KRT6A is markedly overexpressed

in epidermal keratinocytes. Functional experiments
demonstrate  that KRT6A  knockdown  attenuates
inflammation, while KRT6A overexpression worsens

pathological phenotypes. Mechanistically, in vitro evidence
suggests that KRT6A may enhance inflammatory responses
by activating the signal transducer and activator of
transcription 3 (STAT3) signaling pathway, likely through
the inhibition of ring finger protein 41 (RNF41)-mediated
ubiquitination and degradation of Janus kinase 1 (JAK1),
thereby sustaining STAT3 activation and promoting the
expression of proinflammatory cytokines in keratinocytes
[114], as depicted these
mechanistic insights are based largely on in vitro assays, and
the RNF41-JAK1 axis has not been validated in vivo.

In addition, narrow-band ultraviolet-B (NB-UVB) therapy,

a standard treatment for psoriasis, significantly downregulates

in Figure 2. Nonetheless,

KRT6A gene expression in both the peripheral and central
regions of psoriatic plaques. This downregulation is associated
with the normalization of keratinocyte differentiation,
suggesting that KRT6A may act as a mediator of abnormal
keratinization in psoriasis. However, these transcriptomic
findings are based on a limited sample size and remain
correlative [115].
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Discussion

KRT6A, a stress-inducible type II keratin, plays a
multifaceted and context-dependent role in both epithelial
malignancies and dermatoses. In cancers, its overexpression is
frequently associated with enhanced tumor aggressiveness,
metastatic potential, poor and resistance to
standard therapies. Mechanistically, KRT6A contributes to

malignant progression via promoting proliferation, migration,

prognosis,

epithelial-mesenchymal transition (EMT), immune modulation,
and cell death resistance. In contrast, pathogenic mutations in
KRT6A underlie the inherited disorder pachyonychia congenita
(PC), in which cytoskeletal disorganization, keratinocyte
fragility, and ER stress result in severe skin phenotypes.

Current evidence indicates that KRT6A is subject to complex
regulatory mechanisms at the transcriptional and post-
translational levels, although our understanding of its
upstream regulators, post-translational modifications (PTMs),
and interactome remains incomplete. Proteomic insights suggest
phosphorylation and possibly other PTMs may fine-tune KRT6A
function in distinct pathophysiological contexts. However,
comprehensive mapping of these modifications and their
functional consequences is urgently needed.

From a translational perspective, KRT6A represents a

promising candidate for both biomarker development and
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therapeutic targeting. In oncology, its incorporation into multi-
gene prognostic models has improved patient stratification and
therapeutic guidance, particularly in TNBC, LUAD, PDAC, and
CRC. In hereditary skin diseases, topical or systemic delivery of
RNA interference (RNAi) or small-molecule inhibitors targeting
KRT6A or its downstream effectors offers potential
therapeutic benefit.

Several limitations should be considered when interpreting
the available evidence. First, many clinical investigations were
conducted with relatively small patient cohorts and often lacked
multi-center validation, limiting the generalizability of the
findings. Second, mechanistic insights into KRT6A function
largely rely on in vitro cell line models, with limited in vivo or
clinical evidence to support biological relevance. Third, several
mechanistic  conclusions  originate  from  single-study
observations or correlative transcriptomic and bioinformatic
analyses, which do not establish causality. Additionally,
cancer-type heterogeneity and varied experimental conditions
further complicate the interpretation and comparison of results.

Future research should focus on: (1) large-scale clinical
validation of KRT6A as a diagnostic and prognostic biomarker;
(2) elucidation of its molecular network and upstream regulatory
pathways across disease types; (3) development of safe and efficient
delivery systems for RNAi and antibody-based therapeutics; (4)
integration of single-cell and spatial multi-omics technologies to
delineate KRT6A-associated cellular programs with high
resolution; (5) establishment of KRT6A knockout and
conditional genetic models to dissect its context-dependent
functions in vivo; and (6) initiation of early-phase clinical trials
for KRT6A-targeted inhibitors to accelerate therapeutic
translation. In addition, mechanistic studies on KRT6A’s role in
immune regulation, ferroptosis, and tissue remodeling could
uncover novel vulnerabilities for therapeutic exploitation.

A schematic summary of KRT6A’s upstream regulation,
molecular mechanisms, and clinical significance is illustrated in
Figure 3, providing an integrated visual overview that complements
these conclusions. In conclusion, KRT6A functions as a central
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