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Abstract

Age-related macular degeneration (AMD) represents a leading cause of
irreversible blindness among the older persons. Characterized by a complex
pathogenesis and multiple risk factors, AMD poses substantial challenges for
treatment and has emerged as a significant public health concern. The gut
microbiota constitutes a vast and dynamically evolving ecosystem, with a
healthy microbial community playing an essential role in maintaining host
homeostasis through its involvement in digestion and immune defense.
However, alterations in microbial composition or function can compromise
intestinal barrier integrity, trigger systemic inflammation, and contribute to
disease pathogenesis. Evidence now underscores the influence of gut
microbiota on the development and progression of AMD. This review
examines the mechanisms by which gut microbes may contribute to AMD
pathogenesis and evaluates the therapeutic potential of interventions targeting
the gut microbiome—including dietary modifications, Pharmacological and
Biological ~ Agents, probiotics, prebiotics, and fecal microbiota
transplantation—for AMD management.

KEYWORDS

age-related macular degeneration, fecalmicrobiota transplantation, gut microbiota,
intestinal barrier, short-chain fatty acids

Impact statement

This manuscript aims to elucidate the role of the gut microbiome in the pathogenesis
of age-related macular degeneration (AMD) through the “gut-eye axis” and to
systematically position this emerging field. By synthesizing existing evidence, we
comprehensively describe how gut dysbiosis drives the initiation and progression of
AMD by compromising intestinal barrier integrity, triggering systemic inflammation,
affecting the complement system, and altering microbial metabolite levels. Furthermore,
this review evaluates the potential and challenges of gut microbiome-targeted therapeutic
strategies, such as dietary modifications, prebiotics, probiotics, and fecal microbiota
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transplantation. The contribution of this work lies in providing a
novel, interdisciplinary perspective for understanding and
treating this complex ocular disease, linking gut health with
retinal pathology and outlining future research directions for
the field.

Introduction

Age-related macular degeneration (AMD) is a progressive,
multifactorial neurodegenerative disorder affecting the retina,
predominantly manifesting in older adults. Epidemiological
evidence identifies AMD as a leading cause of irreversible
vision loss in aging populations across industrialized nations
[1, 2]. With the global population aging, the prevalence of AMD
has risen substantially, emerging as a critical public health
challenge. Pathologically, AMD is categorized into two
primary subtypes: dry (non-exudative) and wet (exudative)
AMD. Dry AMD, the more common form, is defined by
progressive geographic atrophy (GA) of the retinal pigment
epithelium (RPE) and
degeneration. When these pathological changes affect the

subsequent  photoreceptor  cell
macula, the central retinal region responsible for high-acuity
vision, irreversible central vision loss ensues [3]. Wet AMD is
characterized by the pathological invasion of choroidal capillaries
through Bruch’s membrane into either the sub-RPE space or the
neural retinal layer, culminating in choroidal neovascularization
(CNV). These aberrant vessels exhibit heightened fragility and
permeability, frequently leading to fluid leakage, retinal
structural distortion, fibrotic scarring, and irreversible damage
to the macular region. Collectively, these pathological changes
drive progressive and often severe central vision loss [4]. Table 1
reports the comparison of the key characteristics between Dry

TABLE 1 Comparison of key characteristics between dry and wet AMD.
Feature Dry (atrophic) AMD

Prevalence 80%-90%

10.3389/ebm.2026.10876

and Wet AMD. AMD exhibits marked geographic variation in
prevalence. Globally, among individuals aged >60 years, Dry
AMD affects 8.5% of the population, while Wet AMD accounts
for 2%. Epidemiological patterns demonstrate higher AMD rates
in Europe and North America compared to Asia and Africa.
Projections indicate the global AMD burden will surpass
350 million cases by 2040, reflecting demographic
aging trends [5].

AMD is a multifactorial condition associated with age,
genetic predisposition, light exposure, immune status, sex,
ethnicity, body weight, and oxidative stress. Nevertheless, its
precise etiology remains incompletely understood. Currently, no
effective treatment exists for the progressive degeneration and
atrophy of photoreceptors and RPE cells in Dry AMD, which is
managed primarily through nutritional supplementation and
lifestyle modifications to delay disease progression [6]. In
contrast, Wet AMD can be effectively controlled with anti-
vascular endothelial growth factor (VEGF) agents such as
bevacizumab, aflibercept, and ranibizumab. However, despite
their efficacy in most cases, long-term anti-VEGF therapy poses a
substantial [7, 8]
approximately 10% of patients exhibit a poor response to

socioeconomic  burden Moreover,
anti-VEGF treatment, underscoring the need for novel
therapeutic strategies [9].

The gut microbiota plays a crucial role in maintaining host
physiological homeostasis by participating in nutrient
metabolism and supporting innate immunity [10-12]. It
contributes to a dynamic host-microbe equilibrium, wherein
(MAMPs)  can

potentiate inflammatory responses [13]. Furthermore, gut-

microbe-associated  molecular  patterns

derived immune cells or damage-associated molecular patterns
(DAMPs)  may  amplify  the
inflammation [14, 15].

cascade  of  ocular

Wet (neovascular) AMD

10%-20%

Disease onset & course Insidious onset and slow progression

Core pathogenesis

Primary symptoms Gradual, painless bilateral vision loss; may include

metamorphopsia

Characteristic fundus
findings

Hard: Small, round, well-defined borders
Soft: Larger, poorly defined borders, may coalesce

Drusen characteristics

Degeneration and atrophy of the retinal pigment epithelium (RPE) = Formation of a choroidal neovascularization (CNV) membrane beneath

Drusen, pigmentary disturbances, geographic atrophy

Acute onset and rapid progression

the RPE

Sudden vision loss, metamorphopsia, or central scotoma

Macular exudation, hemorrhage, subretinal/pigment epithelial fluid,
disciform scar

Drusen may be present within or at the edge of the lesion

Late-stage features
larger choroidal vessels

Geographic atrophy of the RPE and choriocapillaris, unmasking of =~ Organization of submacular hemorrhage leading to a disciform scar and

permanent central vision loss

Complications —

Experimental Biology and Medicine

May be associated with macular edema; significant hemorrhage can lead to
vitreous hemorrhage
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Disruption of the gut microbiota has been significantly
associated with ocular diseases, including AMD [16, 17].
AMD is characterized by RPE dysfunction and photoreceptor
loss, and its development can be influenced by various factors,
among which diet plays a critical role [18]. Both animal and
clinical studies have established a link between the gut microbiota
and neovascular AMD. Dietary habits modulate the composition
of the gut microbiota, which may in turn affect the progression of
AMD [19-21]. High-glycemic index diets represent a significant
risk factor for the development and progression of non-diabetic
individuals. In animal studies, this type of diet has been
associated with specific alterations, including reduced
pigmentation and loss of RPE, accumulation of lipofuscin,
and degeneration of photoreceptor cells [22, 23]. Studies have
also revealed an increase in intestinal pro-inflammatory bacteria,
such as Anaerorhabdus and Oscillibacter, which contributes to
enhanced intestinal permeability [24, 25]. Furthermore, a
the  primary
neurotransmitter in the retina, is associated with impaired

reduction in  glutamate, excitatory
retinal neurotransmission, while elevated arginine levels are
linked [26, 27].

Collectively, significant

to progressive chorioretinal
these

association between alterations in the gut microbiota and the

atrophy
findings demonstrate a
pathogenesis of AMD.

The Gut-Eye axis operates within a complex, multi-
layered context. Several established risk factors for AMD,
such as smoking and poor nutrition, particularly diets high in
processed foods, sugars, and saturated fats—also act as potent
disruptors of intestinal microbial homeostasis. Smoking
induces gut dysbiosis, reduces microbial diversity, and
increases intestinal permeability, thereby promoting a pro-
inflammatory state that may exacerbate retinal pathology
[28-30]. Similarly, diets deficient in dietary fiber and rich
diminish beneficial fiber-
(SCFA)-producing
species and promote the expansion of pro-inflammatory

in ultra-processed foods

fermenting, short-chain fatty acid

taxa, while compromising intestinal barrier function. This

creates a systemic environment conducive to AMD
pathogenesis [31, 32].

Furthermore, systemic comorbidities strongly associated
with AMD risk—including hypertension, dyslipidemia, and
linked

detrimental alterations in the gut microbiome [33-35]. These

diabetes—are themselves to distinct and often
conditions share underlying pathways of chronic low-grade
inflammation, endothelial dysfunction, and oxidative stress, all
of which can be modulated by the gut microbiota and likely
converge to affect retinal health. This interconnectedness
underscores that interventions targeting gut dysbiosis in AMD
should be considered part of a holistic therapeutic strategy.
Addressing modifiable risk factors, such as smoking cessation,
adoption of a Mediterranean-style diet, and management of
systemic comorbidities, can synergistically improve microbial
balance and may potentially slow AMD progression.
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This review seeks to synthesize the evidence that gut
microbiota influences the initiation and progression of AMD
via the regulation of systemic and ocular immunity and
inflammation. It also examines the clinical prospects and
challenges associated with microbiome-targeted therapeutic
strategies.

The composition and function of the
gut microbiota

The human gut constitutes a complex, individualized, and
dynamic ecosystem in a state of equilibrium. It harbors
approximately 10' microorganisms, encompassing over
1000 with  their
progressively from the stomach to the distal colon.

species, concentration  increasing
Biologically, gut microbiota are classified into seven
hierarchical levels: kingdom, phylum, class, order, family,
genus, and species, with species being the most fundamental
unit. Based on natural characteristics, the predominant

bacterial phyla are primarily classified into six major

groups: Firmicutes, Bacteroidetes, Proteobacteria,
Actinobacteria, Verrucomicrobia, and Fusobacteria [36].
Among these, Firmicutes account for approximately

60-80%, followed by Bacteroidetes at 20-30%, while other
phyla constitute relatively minor proportions. A healthy gut
microbiota is crucial for maintaining host homeostasis by
actively participating in development, digestion, metabolism,
and immune defense. However, when disruptions occur in its
composition, function, or regulatory dynamics, the host’s
the
microbiota, triggering an inflammatory state. This can

immune system may exceed its tolerance for

subsequently lead to systemic tissue damage and the
Based their
microbiota can be

of various diseases.
the host,
three primary groups: i)
comprising Bifidobacterium,
which the
dominant flora and play a vital role in maintaining normal
ii)
pathogens, such as Enterococcus and Enterobacter, which

pathogenesis
relationship  with

on
gut
Beneficial

categorized into

bacteria, primarily

Lactobacillus, and Bacteroides, represent

physiological functions. Commensal opportunistic
are typically harmless under conditions of microbial

equilibrium but can become invasive under specific
circumstances. iii) Pathogenic bacteria, often transient
populations like Proteus and Staphylococcus aureus, which
rarely achieve long-term colonization within the gut [37]. Gut
microbiota dysbiosis is associated not only with
gastrointestinal disorders but also with a spectrum of
extra-intestinal diseases, including those affecting the
neurological, metabolic, cancer-immunological, and
cardiovascular systems [38-42].

During embryonic development, the retina and optic nerve

originate from the brain and later develop as components of the
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Mechanisms of Gut Microbiota in AMD.

Studies have indicated that
neurodegenerative diseases, such as Alzheimer’s disease and

central nervous system [43].

Parkinson’s disease, are associated with gut microbiota,
with
diseases, including enhanced inflammation, impaired blood-

sharing common pathological mechanisms retinal
brain barrier function, vascular dysfunction, and metabolic
abnormalities [44, 45]. Rowan et al. demonstrated that dietary
patterns influence the pathology of AMD, a process linked to gut
microbiota, thereby introducing the concept of a “Gut-Eye axis
[23].” This hypothesis posits that diet, probiotics, or antibiotics
can modulate the progression of retinal diseases by altering the
gut microbiota [46]. The subsequent detection of microbial
presence in the systemic circulation [47], liver [48], pancreas
[49], and even the eye [50] has further supported the potential
significant role of gut microbiota in ocular pathologies.

Emerging evidence indicates that gut microbiota dysbiosis is
associated with the pathogenesis of AMD [51, 52], suggesting
that the Gut-Eye axis may represent a potential pathological
origin of the disease. Mechanisms of Gut Microbiota in AMD
(see Figure 1).
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Mechanisms underlying the influence
of gut microbiota on AMD

Characteristics of gut microbiota
composition in AMD patients

Significant differences exist in the taxonomic composition of
the gut microbiota between individuals with AMD and healthy
subjects [53]. Clinical studies utilizing techniques such as 16S
rRNA gene sequencing have revealed significant alterations in
the gut microbiota of patients with AMD compared to healthy
controls. A prominent finding is an increased Firmicutes/
Bacteroidetes (F/B) ratio, which is considered a hallmark of
gut dysbiosis [54]. The rise in Firmicutes abundance may
in AMD
in  Bacteroidetes

contribute to elevated inflammation
the
compromise intestinal barrier integrity and disrupt nutrient
[55].

et al. identified additional features of gut microbial dysbiosis

systemic

patients, whereas decrease could

metabolism Through metagenomic sequencing, Xue

in AMD, including reduced alpha diversity, a decreased F/B ratio,
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TABLE 2 Gut microbiome differences between AMD patients and healthy controls.

Aspect of comparison

Overall microbiome structure

controls
Phylum/Class level differences

Genus/Species level differences (relative enrichment)
inflammation)

Patients with AMD

Significant differences in microbial species and
metabolic pathway abundance. Principal component
analysis (PCA) reveals distinct clustering separate from
Higher relative abundance of Firmicutes

Anaerotruncus (associated with aging and

Oscillibacter (associated with high-fat diet)

Healthy controls

Relatively stable and distinct microbial community
structure

Higher relative abundance of Bacteroidetes

Bacteroides eggerthii
Other Bacteroides species

Ruminococcus torques (mucin-degrading capacity)
Eubacterium ventriosum (linked to elevated pro-
inflammatory cytokines)

Prevotella (enriched in patients with advanced AMD)

Core metabolic pathway differences

Enriched Pathways:
e L-alanine fermentation
e Glutamate degradation

Enriched Pathways:
o Fatty acid elongation pathway

e Arginine biosynthesis

¢ Purine ribonucleoside degradation

Potential mechanistic links

three
N-acetylneuraminate degradation, glycerol degradation to

and impaired activity in degradation pathways:
butanol, and glycogen degradation I. Notably, this study also
provided the first evidence linking AMD to intestinal phage
dysbiosis, identifying Bacteroidaceae as the primary host for
these

alterations may promote increased intestinal permeability and

AMD-associated  phages.  Collectively, microbial
bacterial translocation, thereby accelerating the formation and
progression of vitreous deposits and RPE abnormalities [56]. Li
et al. conducted gut microbiota and fecal metabolomic analyses
in a laser-induced CNV mouse model alongside normal controls.
Their findings revealed significant alterations in the gut
microbiota of CNV mice, characterized by a marked
upregulation of Candidatus Saccharimonas and relatively
of the Prevotellaceae_NK3B31_group,

lower abundances

o Increased gut permeability
e Immune & complement system
¢ Nutrition & metabolism

A homeostatic gut microbiome

host metabolism and immune function through multiple
pathways [59, 60]. In AMD, abnormal SCFA levels may
disrupt retinal cell metabolism and inflammatory responses.
For example, butyrate exerts anti-inflammatory effects by
inhibiting the NF-xB signaling pathway and reducing the
production of inflammatory cytokines. A reduction in
butyrate-producing bacteria in AMD patients leads to
decreased butyrate levels, which may attenuate its anti-
inflammatory protection in the retina and thereby promote
AMD progression.

Further supporting the therapeutic relevance of this axis,
Zhang et al [61] demonstrated that metformin may exert
protective effects in neovascular AMD by modulating the gut
microbiota and the Gut-Eye axis. Specifically, metformin

treatment significantly altered gut microbial composition,

Candidatus Soleaferrea, and Truepera. Fecal metabolomics increasing the abundance of Bifidobacterium and
identified 73  altered metabolites. ~ Further  analysis Akkermansia, and elevated fecal concentrations of
demonstrated a  significant  correlation  between the butyrate, other SCFAs, and Bile acids. These metabolites

Prevotellaceae_NK3B31_group and Candidatus Saccharimonas
[57]. The differences in gut microbiome composition between
patients with AMD and healthy controls are summarized
in Table 2.

Gut microbiota metabolites and AMD

Gut microbiota-derived metabolites are highly diverse and
play a significant role in the pathogenesis of AMD [58]. SCFAs,
including acetate, propionate, and butyrate, are major products
of dietary fiber fermentation by gut microbes. SCFAs regulate

Experimental Biology and Medicine
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are considered key mediators of its protective effects:
butyrate inhibits pathological angiogenesis via the TXNIP/
VEGFR2 signaling pathway, while SCFAs activate the
G-protein coupled receptors GPR41 and GPR43 on
intestinal epithelial cells, subsequently triggering the
MAPK pathway the of

chemokines and cytokines, which may ultimately modulate

and promoting secretion
retinal inflammation and angiogenesis [62].

In addition, gut microbiota metabolize tryptophan into
indole derivatives, such as indole-3-lactic acid and indole-3-
propionic acid (IPA). These metabolites can activate the aryl
hydrocarbon receptor (AHR), thereby regulating immune cell
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function and retinal tissue homeostasis, and influencing the
development of ocular diseases [63].

Intestinal barrier integrity and AMD

The intestinal mucosal epithelium forms a physical barrier
through tight junction proteins, such as occludin and claudin
family proteins, which prevents gut bacteria and their
metabolites from entering the systemic circulation. However,
damage to this barrier—caused by factors such as gut dysbiosis,
dietary insults, or oxidative stress—can lead to a “leaky gut”
condition, resulting in increased intestinal permeability. Under
conditions of “leaky gut,” bacteria and their metabolites, such as
(LPS), the
compromised intestinal mucosal barrier into the systemic

lipopolysaccharide can translocate across
circulation. As a key inflammatory trigger, LPS specifically
binds to Toll-like receptor 4 (TLR4) expressed on immune
cells—including monocytes and macrophages. This binding
activates intracellular inflammatory signaling pathways, such
as NF-kB, leading to the robust secretion of pro-inflammatory
cytokines by these immune cells [64]. Among these cytokines, IL-
6 amplifies the inflammatory cascade by activating the JAK-
STAT signaling pathway and promotes vascular endothelial cell
activation [65]. Meanwhile, TNF-a directly induces apoptosis
and enhances the expression of other inflammatory mediators,
such as the chemokine CCL2, thereby further recruiting
inflammatory cells to the site [66].

These LPS-induced pro-inflammatory cytokines serve as a
critical link between “leaky gut” and AMD. A central pathological
feature of AMD is dysfunction of the RPE, a cell layer essential for
maintaining retinal homeostasis through its barrier and
phagocytic functions. When cytokines such as IL-6 and TNE-
a reach the retina via systemic circulation, they contribute to
AMD pathogenesis through multiple mechanisms [67]. These
cytokines contribute to AMD pathogenesis through several key
mechanisms. Notably, they can disrupt tight junctions between
RPE cells, which exacerbates damage to the blood-retinal barrier
and impairs the phagocytic capacity of RPE cells. This
dysfunction leads to the accumulation of metabolic waste,
thereby promoting the formation of drusen—a hallmark
of Dry AMD.

A well-defined molecular link exists between IL-6 and CNV
in Wet AMD. IL-6 binding to its receptor complex (IL-6R/gp130)
on retinal cells activates the JAK/STAT3 signaling pathway.
Following phosphorylation and dimerization,
STATS3 translocates to the nucleus and directly binds specific
response elements in the VEGF gene promoter, driving its
transcription [68]. IL-6 can additionally activate the Ras/
MAPK pathway, further amplifying VEGF expression. The
consequent elevation in VEGF levels induces abnormal
proliferation of choroidal capillary endothelial cells, facilitating
their penetration through the compromised Bruch’s membrane

Experimental Biology and Medicine
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into the subretinal space to form CNV [69]. These fragile
neovessels are prone to leakage and hemorrhage, leading to
acute vision loss—a defining characteristic of Wet AMD.
Concurrently, TNF-a exacerbates oxidative stress and drives
RPE degeneration through multifaceted mechanisms. Upon
binding to TNFR1 on RPE cells, TNF-a activates the NF-«xB
pathway, upregulating NADPH oxidases such as NOX4 and
increasing intracellular reactive oxygen species (ROS) [70]. It
also impairs mitochondrial electron transport chain function,
promoting mitochondrial ROS production. The resulting ROS
overload damages cellular proteins, lipids, and DNA, disrupting
homeostasis [71]. Furthermore, TNF-a activates the p38 MAPK
pathway, upregulating senescence-associated proteins including
p53 to induce RPE cell senescence, and initiates the apoptotic
cascade via caspase-8, leading to caspase-3-dependent apoptosis
[72, 73]. these
contribute to RPE cell loss, compromise the outer blood-

Collectively, TNF-a-mediated processes
retinal barrier, and accelerate the progression to advanced
AMD features such as drusen expansion and GA [74].

Gut microbiota and the
complement system

The complement system, a crucial component of innate
immunity, can be initiated through three pathways: the lectin,
classical, and alternative pathways. Accumulating evidence
indicates a close relationship between the gut microbiota and
the complement system. For example, Wu et al. reported that the
production of complement component 3 (C3) in the host
intestine is associated with gut microbial abundance, and its
baseline level is influenced by microbial composition in both
humans and mice, exhibiting inter-individual variation [75].
Complement activation is also an important factor influencing
the progression of AMD. Specifically, complement factor H
(CFH), a key regulator of complement activation, is strongly
linked to the genetic risk of AMD. The CFH Y402H
polymorphism has been associated with alterations in various
microbial taxa and leads to elevated levels of the membrane
attack complex in carriers, which may exacerbate inflammatory
responses and thereby promote AMD development [76]. In a
long-term follow-up cohort of patients with intermediate AMD,
Anne M. et al. identified significant associations between
progression to late AMD and several systemic complement
factors and ratios—such as C4, C4b, C3a/C3, C5a/C5, sC5b-9/
C5, and factor I—with some indicators showing hazard ratios
exceeding tenfold [77]. In 2023, the FDA approved two
intravitreal injectable complement inhibitors: pegcetacoplan
(SYFOVRE), which targets C3, and avacincaptad pegol
(IZERVAY), which targets C5. This milestone marks the entry
of AMD treatment into the “complement inhibition era” and
provides the first disease-modifying therapy for patients with
GA [78, 79].
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TABLE 3 Summary of key mechanisms linking gut microbiota to AMD pathogenesis.

Mechanistic pathway  Key alterations/Components
Microbial composition &
diversity such as candidatus saccharimonas
Microbial metabolites

such as indole-3-propionic acid

T F/B ratio; | alpha diversity; alterations in specific genera

| SCFAs including butyrate; altered tryptophan derivatives

Proposed impact on Retina/AMD

Promotes a pro-inflammatory systemic state; compromises gut barrier
integrity

Reduces anti-inflammatory and anti-angiogenic protection; disrupts
immune homeostasis via AhR signaling

Intestinal barrier integrity

Impaired tight junctions; T intestinal permeability; systemic

(“leaky gut”) translocation of LPS
Systemic & ocular LPS/TLR4/NF-«B activation; T IL-6, TNF-a, MCP-1
inflammation

Gut-complement system

Interaction activation involving C3, C5a, and MAC

Furthermore, research by Denise C. Zysset-Burri et al.
in both human AMD
patients and C3-deficient mice, including enrichment of

revealed consistent alterations

Firmicutes, reduction in Bacteroidetes, and dysregulation
of purine metabolism pathways. These findings suggest that
the complement system may indirectly influence AMD
progression by modulating the composition and function
of the gut microbiome. Specifically, the class Negativicutes
showed a positive correlation with CFH and may exacerbate
AMD via alternative pathway activation, whereas the genus
Bacteroides likely confers protection by suppressing
excessive complement activation [80]. These results align
with the same team’s earlier findings from 2017 and provide
additional evidence linking the complement system to
AMD pathogenesis, further supporting the notion that
the
interconnected and may jointly contribute to AMD

gut microbiome and complement system are

development [54].

Investigating the contributions of gut
microbiota to AMD pathogenesis and
modulation in animal models

Aimée Parker et al. employed an integrated approach
NMR-based
metabolomics, and immunohistochemistry to investigate the

combining metagenomic sequencing,
role of gut microbiota in regulating age-related damage to the
intestinal barrier, Central Nervous System, and retina. Their
findings demonstrated that fecal microbiota transplantation
(FMT) from aged donors to young recipients significantly
accelerated intestinal barrier leakage, activated microglia in the
brain, and induced retinal inflammation, evidenced by elevated
complement C3 and reduced RPE65 protein levels. Conversely,
when aged mice received microbiota from young donors,
complement C3 and RPE65 levels were restored, underscoring
the critical role of gut microbiota in modulating inflammatory
processes relevant to AMD [81].

Experimental Biology and Medicine

CFH polymorphism-linked microbial shifts; complement
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Triggers chronic low-grade inflammation; elevates circulating pro-
inflammatory cytokines such as IL-6 and TNF-a

IL-6 drives VEGF-mediated CNV; TNF-a induces RPE oxidative stress,
senescence, and apoptosis; recruits immune cells to retina

Exacerbates inflammatory response; synergistically damages RPE and
choroid

Andriessen et al. reported that mice fed a high-fat diet
developed gut dysbiosis characterized by an elevated F/B ratio
and increased intestinal permeability. These animals exhibited a
chronic low-grade inflammatory state, marked by elevated levels
of TNF-a, IL-6, IL-1B, and VEGF-A. Such inflammatory
mediators are known to exacerbate CNV, thereby promoting
the development of neovascular AMD. Furthermore, studies
have shown that increased abundances of Anaerotruncus and
Ruminococcaceae in aged mice correlate with elevated serum
levels of MCP-1. As a member of the chemokine family, MCP-1
recruits monocytes/macrophages into the retina, stimulating the
secretion of TNF-a, IL-1pB, and VEGF, and thereby contributing
to retinal inflammation and angiogenesis. These findings suggest
that gut microbiota may modulate inflammatory responses via
mediators such as TNF-a and MCP-1, thereby influencing the
pathogenesis of AMD [82]. The key mechanisms linking gut
microbiota dysbiosis to the pathogenesis of AMD are
summarized in Table 3.

Therapeutic strategies targeting the
gut microbiome

Given the established links between gut dysbiosis and AMD
pathogenesis—particularly through mechanisms
integrity,
systemic/complement inflammation—targeted modulation of

involving

microbial metabolites, intestinal barrier and

the gut microbiome emerges as a promising therapeutic

avenue. Current strategies aim to restore microbial

equilibrium, enhance beneficial metabolite production, and
mitigate cascades,

pro-inflammatory thereby potentially

influencing the course of AMD.

Dietary interventions

Diet is a central driver in shaping the gut microbiota,

influencing the host metabolome through microbial
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metabolism. These diet and microbiota-related metabolites
subsequently affect the initiation and progression of AMD via
the Gut-Eye axis. Rowan et al. demonstrated that an HG diet
induced multiple AMD-like features in mice, including RPE
atrophy, accumulation, and

lipofuscin photoreceptor

degeneration. In contrast, an LG diet prevented such
pathological changes. Even when initiated in aged mice,
switching from an HG to an LG diet halted or reversed AMD
characteristics. Mechanistically, the LG diet reduced the
accumulation of advanced glycation end products (AGEs) and
lipid peroxidation products such as CEP and 4-HNE. It also
modulated the gut microbiota—with Clostridiales associated with
HG/AMD susceptibility and Bacteroidales linked to LG/AMD
protection—and increased levels of protective microbial
metabolites such as serotonin. These effects collectively
underlie the protective role of the LG diet against diet- and
age-induced AMD, mediated through the Gut-Eye axis [23].
Studies have shown that compared to the Western diet rich in
sugar and fat, the Mediterranean diet—characterized by high
consumption of fish, vegetables, olive oil, and moderate intake of
meat—is associated with a reduced risk of progression to late-
stage AMD, Fish and vegetables are identified as key protective
components of this dietary pattern [83, 84]. Its protective effects
are mediated through several gut-centric mechanisms: (1) It
promotes a higher abundance of Bacteroidetes and a lower
Firmicutes/Bacteroidetes ratio, a profile linked to lower
systemic inflammation. (2) It enhances the production of
SCFAs like butyrate, which strengthen the intestinal epithelial
barrier and exert systemic anti-inflammatory effects. (3) By
improving barrier function and reducing = systemic
inflammatory tone such as lowering TNF-a, IL-6, it indirectly
dampens microglial activation in the retina and the propensity
for CNV [51]. Thus, the Mediterranean diet acts as a multi-
modal intervention targeting metabolite production, barrier

integrity, and inflammatory pathways.

Pharmacological and Biological Agents

Certain drugs or natural metabolites can exert part of their
therapeutic effects through gut microbiota remodeling, thereby
linking pharmaceutical intervention to the Gut-Eye axis.
Metformin, beyond its glucose-lowering effects, has shown
AMD models.
demonstrated that its protective effect is mediated via gut

promise in neovascular Zhang et al
microbiota modulation [61]. Specifically, metformin treatment
increases the abundance of beneficial genera including
Bifidobacterium and Akkermansia, and elevates fecal levels of
SCFAs and Bile acids. The subsequent increase in butyrate
inhibits through the TXNIP/

VEGFR2 pathway, providing a direct example of how a drug

pathological ~angiogenesis

can harness the SCFA-mediated mechanism to achieve ocular
therapeutic effects. Prasad’s research confirmed that direct
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supplementation of IPA and other related interventions
improve glucose homeostasis and retinal function. This is

achieved by regulating the gut microbiota, enhancing
intestinal barrier function, activating the AhR and pregnane X
receptor (PXR), and inhibiting the TLR4/

NLRP3 inflammatory pathway [85].

Additionally, the recent FDA approval of complement
C3 and C5 inhibitors (pegcetacoplan, avacincaptad pegol) for
GA represents a breakthrough in AMD treatment [78, 79]. The
complement system and gut microbiome are known to be
interrelated: studies have shown that complement factor
polymorphisms such as CFH Y402H are associated with
[76],
deficiency such as C3 deficiency alters gut microbiota in mice

distinct gut microbial profiles and complement
[80]. Although current complement inhibitors are administered
intravitreally, their systemic effects or the status of the gut-
complement axis may influence treatment response.
Therefore, future research into oral agents that modulate the
complement system, such as those acting via factor I, should
consider their impact on the gut microbiome or potential
synergistic effects with the gut microbiome as part of their

mechanism of action.

Probiotics and prebiotics

Probiotics are recognized for their ability to inhibit
pathogen colonization, modulate gut microbiota and

immune responses, and enhance intestinal epithelial
barrier function [86]. By primarily acting through the Gut-
Eye axis, orally administered probiotics represent a systemic
therapeutic strategy with potential relevance to retinal
AMD.

involving 57 AMD patients, an 8-week oral probiotic

diseases like In a randomized controlled trial

intervention containing Bacillus, Lactobacillus, and
Bifidobacterium strains did not lead to significant
improvements in clinical symptoms or other metabolic
parameters. However, it exerted positive effects on

systemic oxidative stress markers by reducing the pro-
oxidant malondialdehyde (MDA) and enhancing total
antioxidant capacity (TAC) [87]. This mechanistic link is
relevant because oxidative stress contributes to the pathology
of both Dry and Wet AMD. By reducing systemic oxidative
load, probiotics may help lower the risk of damage to the RPE
and photoreceptors.

Studies in animal models of retinal degeneration have shown
that specific probiotic strains can attenuate photoreceptor cell
death, reduce retinal glial activation, and improve visual
function, likely through the modulation of systemic and local
immune responses [88, 89]. While direct translation to human
AMD requires validation, these findings underscore the potential
of probiotics not merely as gut modulators, but as agents capable
of influencing the neuroinflammatory milieu of the retina itself.
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TABLE 4 Overview of microbiome-targeted therapeutic strategies for AMD.

Strategy

Approach

Proposed mechanisms of action in
AMD context

10.3389/ebm.2026.10876

Current evidence & considerations

Dietary interventions

Mediterranean diet; low-glycemic diet

Modulates microbiota composition
(TBacteroidetes, | F/B ratio); TSCFAs
production; strengthens gut barrier; reduces
systemic inflammation

Strong epidemiological association with
reduced AMD risk; causal evidence from
animal models

Pharmacological Metformin; IPA Remodels gut microbiota (Tbeneficial genera); = Preclinical evidence promising; human studies
agents increases butyrate and IPA; activates AhR/PXR; = needed to confirm efficacy for AMD
inhibits TLR4/NLRP3 inflammation
Probiotics Oral supplements containing strains such as | Competes with pathogens; modulates host Preclinical evidence promising; human studies
Lactobacillus and bifidobacterium immunity; enhances gut barrier; may reduce needed to confirm efficacy for AMD
systemic oxidative stress
Prebiotics Dietary fibers including inulin and FOS, Stimulates growth of beneficial bacteria such as = Limited direct research in AMD; shown
which selectively feed beneficial bacteria Lactobacillus, bifidobacterium; synergizes with | benefit in related ocular surface diseases
probiotics (synbiotics)
FMT Transfer of processed fecal matter from a Most comprehensive restoration of microbial = Preclinical studies show reversal of AMD-

healthy donor

diversity and function; repairs gut barrier;
reverses pro-inflammatory state

related biomarkers; clinical application in
AMD remains exploratory

Future research should focus on identifying strain-specific
effects, optimal dosing regimens, and their potential role as
adjunctive therapy to standard AMD treatments.

Prebiotics are substrates selectively utilized by host gut
microorganisms, conferring health benefits to the host [90,
91]. A defining characteristic of prebiotics is their resistance
to degradation by host enzymes [91]. By selectively stimulating
the growth and activity of beneficial bacteria such as Lactobacillus
and Bifidobacterium, prebiotics modulate the composition of the
gut microbiota and thereby enhance the functional efficacy of
probiotics [92].

In the context of ocular diseases, a double-blind, randomized
controlled trial investigated the potential of oral probiotics and
prebiotics in managing dry eye disease. The results demonstrated
that after 4 months of intervention, the mean Ocular Surface
Disease Index score in the treatment group was significantly
improved compared to the control group [93]. Nevertheless,
research on prebiotics in ocular pathologies remains limited, and
their specific contributions to the observed effects require further
clarification.

FMT

FMT involves transferring functional microbial communities
from the feces of healthy donors into the gastrointestinal tract of
recipients to reconstitute a balanced gut microbiota. This
procedure enhances microbial diversity, restores Bile acids
metabolism, and improves intestinal function, demonstrating
notable efficacy in eradicating Clostridium difficile infection in
patients with colitis [94]. In adults, the gut microbiota typically
maintains relative stability; however, its diversity gradually
declines with aging. Compared to younger individuals, older
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persons subjects exhibit significant alterations in microbial

composition, characterized by reduced abundances of
Bacteroides, Bifidobacterium, and Enterobacteriaceae, alongside
a relative increase in Clostridia [95].

However, research on the application of FMT for treating
AMD remains limited. In the context of ocular disorders, Jiao
et al. demonstrated that aging induces gut microbial dysbiosis in
mice, which in turn triggers chronic inflammation, lipid
accumulation, and circadian disruption in the lacrimal gland.
these

pathological changes by remodeling the gut microbiota,

Importantly, FMT from young donors reversed
thereby restoring lacrimal secretory function and circadian
rhythms ~ [87].

demonstrated that FMT from aged donors to young recipients

transcriptional Aimée Parker et al

significantly accelerated intestinal barrier leakage, activated

cerebral microglia, and induced retinal inflammation,

characterized by elevated complement C3 and reduced
RPE65 levels. Conversely, aged mice receiving young donor
with
normalized complement C3 and RPE65 expression. These

microbiota showed reversal of these biomarkers,

findings suggest that FMT may represent a potential
therapeutic strategy for AMD [81]. Table 4 provides a
comparative  overview of these  microbiome-targeted
therapeutic strategies.
Discussion

Advances in microbiomics have established clear

connections between gut microbiota and systemic diseases.
The concept of the “Gut-Eye axis” offers a new lens through
which to understand the pathogenesis of ocular conditions such
as AMD. Evidence indicates that gut dysbiosis influences the
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onset and progression of AMD through multiple pathways,
including microbial metabolites, immune regulation, barrier
integrity, the [96, 97]. This
perspective not only highlights the significant role of intestinal

and complement system
microecology in ophthalmology but also provides a theoretical
foundation for clinical intervention.

Studies reveal significant differences in gut microbiota
characteristics between AMD patients and healthy individuals.
These primarily manifest as an altered Firmicutes/Bacteroidetes
ratio, reduced diversity, and shifts in the abundance of specific
bacterial genera [98]. These structural changes are closely linked
to functional disturbances. Reduced levels of SCFAs diminish
their
tryptophan metabolism disrupt immune homeostasis. More

anti-inflammatory effects, while abnormalities in
critically, gut dysbiosis can compromise intestinal barrier
function, allowing pro-inflammatory molecules like LPS to
enter the systemic circulation and trigger a state of chronic,
low-grade inflammation. This inflammatory environment,
driven by factors such as IL-6 and TNF-o, directly or
function,

the

indirectly damages retinal pigment epithelial

exacerbates oxidative and
formation of CNV.

Animal experiments provide further evidence for a causal

stress, promotes

relationship for the existence of the Gut-Eye axis. Diet-induced
dysbiosis can accelerate AMD-like pathology [82]. FMT studies
demonstrate that microbiota from aged donors is sufficient to
induce retinal inflammation in younger recipients, while
microbiota from young donors can reverse retinal
abnormalities in aged subjects [81].

The Gut-Eye axis theory suggests that strategies targeting the
gut microbiome hold substantial clinical value. For prevention,
personalized  dietary specific

interventions to optimize microbial balance may serve as low-

adjustments  or prebiotic
risk strategies to delay disease progression. Therapeutically,
probiotic formulations have already shown potential in
improving oxidative stress in AMD patients and could
become a valuable adjunct to existing treatments.
Furthermore, the individualized nature of gut microbiota
introduces a new dimension for precision medicine. Analyzing
microbial profiles could enable patient stratification and the
development of tailored intervention protocols.

However, challenges remain in this field. The precise causal
mechanisms linking microbiota and AMD require further

clarification. Standardized protocols for probiotic applications
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