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Abstract 

The majority of cases of autosomal-dominant retinitis pigmentosa (adRP) are 

associated with rhodopsin (RHO) variants. More than 290 pathogenic variants 

responsible for 25%–30% of adRP cases have been identified to date. This 

retrospective report focuses on RHO and RP cases in the Brazilian population. 

Patients with molecular confirmation of pathogenic variants in the RHO gene 

were included. Their clinical and genetic data were analyzed. Segregation 

analyses were included where possible. Cases were classified as generalized 

RP or sector RP according to fundus examinations and imaging data. The 

medical records of 43 patients from 34 families with RHO-associated RP were 

reviewed. Twenty-two disease-causing variants of the RHO gene and four 

previously unreported variants (c.317G>T; c.937-2A>T, c.272_283del, and 

c.530+1G>C) were identified. The majority of cases involved missense 

variants. The most prevalent variant was c.551A>G, p.(Gln184Arg), which was 

identified in seven patients (21%) from four families. One patient presented with 

the splice donor variant c.530+1G>C in the homozygous state, which was 

classified as pathogenic. Thirty-two patients presented with a generalized RP 

phenotype, and six patients were diagnosed with sector RP. This study provides 

information on the clinical and genetic features of RHO-associated RP in the 

Brazilian population, expanding the spectrum of RHO gene disease-causing 

variant frequencies.
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Impact statement

RHO is one of the most frequently implicated genes in 
autosomal-dominant Retinitis Pigmentosa, yet most existing 
data come from non-Latin American populations. By 
identifying and characterizing RHO variants and their allele 
frequencies in Brazilian patients, this work expands the 
international catalog of RHO mutations and refines 
genotype–phenotype correlations in a diverse genetic 
background. The discovery of novel and population-specific 
variants provides critical information for accurate genetic 
diagnosis, counseling, and variant interpretation in Brazil. 
This study enhances clinical and research capacities by 
improving molecular diagnosis, informing patient selection for 
gene-specific therapies, and contributing to equitable 
representation in global RP studies. Ultimately, these findings 
strengthen the foundation for precision medicine and future 
therapeutic advances in inherited retinal diseases.

Introduction

Rhodopsin is a photopigment molecule and the most 
abundant protein in rod photoreceptors. It is primarily 
affected in retinitis pigmentosa (RP). By the late 1980s, 
rhodopsin was one of the best-understood visual proteins in 
terms of its structure, biochemistry, and genetics [1]. The 
rhodopsin gene (RHO) was the first gene for which RP- 
associated variants were identified [2]. Large families with 
autosomal-dominant RP (adRP) have been studied for 
linkages. The first link between RP and the RHO locus was 
reported in 1989, and mutations in RHO were identified 
in 1990 [3].

RHO-associated RP accounts for 20-30% of adRP cases [4], and 
approximately 4% of all RP [5] cases; more than 290 disease-causing 
RHO variants have been identified according to the ClinVar [6], 
UniProt [7], and Franklin Community Databases [8].

The most frequent phenotypes linked to RHO-associated 
RP are the generalized (classical) form and the sector form. 
While sector RP tends to progress more slowly than the 
generalized type, multiple studies have reported that it can 
ultimately develop into a generalized form [9, 10]. RHO 
variants have also been found in the autosomal-recessive 
(arRP) forms of RP [11].

Rhodopsin plays an essential role in the visual process, and 
even minor errors during gene transcription, translation, folding, 
processing, or transport to the correct cellular location can 
impair vision [12]. Previous studies have shown that the 
clinical features of RHO-associated RP correlate with specific 
protein domains affected by mutations [13].

This retrospective study explores the molecular mechanisms 
and phenotypic spectrum of RHO-associated RP in a Brazilian 
population.

Materials and methods

This study was conducted in accordance with the Declaration 
of Helsinki, with strict protection of patient identity, and was 
approved by the Research Ethics Committee of the Universidade 
Federal de Sa􏽥o Paulo (protocol number 5.113.810). Written 
informed consent was obtained where necessary to perform 
the molecular tests. During DNA sample collection for 
molecular testing, all the patients and/or their legal guardians 
provided written informed consent for the use of their personal 
medical data for scientific purposes and publication.

This observational retrospective study was performed. The 
inclusion criterion comprised genetically confirmed RHO- 
associated RP retrieved from the medical records of different 
ophthalmological centers in Brazil. Patient data from 
ophthalmological, genetic, clinical, and imaging records were 
evaluated. Genetic analysis was performed using commercial 
next-generation sequencing (NGS) panels for inherited retinal 
disorders, which included either 224 or 330 genes. Three of the 
most common genetic testing laboratories that were used were 
Invitae Laboratory, Mendelics, and Dasa Genomica. These 
genetic testing laboratories are accredited by the College of 
American Pathologists (CAP) and the Clinical Laboratory 
Improvement Amendments (CLIA). The pathogenicity of each 
variant was classified according to the American College of 
Medical Genetics and Genomics (ACMG) [14]. The RHO 
transcript ID is NM_000539.3. Two platforms combine 
computational predictions with clinical support, segregation, 
or functional studies to assist in variant classification. Both 
use sets of rules that follow the ACMG criteria: Franklin 
(https://franklin.genoox.com) and Varsome (https://varsome. 
com). Both were accessed on 25 October 2025. The identified 
variants were compared with records in ClinVar (https://www. 
ncbi.nlm.nih.gov/clinvar/; accessed on 25 October 2025). 
Segregation analyses were performed where available.

For all variants with sufficient evidence, the classification 
followed the system proposed by Athanasiou et al.: [15] Class 1: 
variants affecting post-Golgi trafficking and outer segment (OS) 
targeting; Class 2: variants involving misfolding, endoplasmic- 
reticulum (ER) retention, and protein instability; Class 3: variants 
disrupting vesicular trafficking and endocytosis; Class 4: variants 
altering post-translational modifications and reducing protein 
stability; Class 5: variants impairing transducin activation; Class 
6: variants leading to constitutive receptor activation; and Class 7: 
variants resulting in dimerization deficiency.

Results

Forty-three patients from 34 families with conclusive 
molecular genetic testing were identified as having RHO- 
associated RP. A total of 22 disease-causing variants of the 
RHO gene were classified as pathogenic or likely pathogenic. 
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Four of these variants were previously unreported and were each 
identified in a different family (c.317G>T, c.937-2A>T, c.272_ 
283del, and c.530+1G>C).

Clinical characteristics

Six patients presented with a sector RP phenotype, and 
32 patients presented with classical RP. One patient was an 
asymptomatic carrier and was evaluated for family history. 
Twenty-five patients had a positive family history (8 patients 
had an affected father, 8 patients had an affected mother, and 
9 patients had an affected relative, such as a son, daughter, or 
cousin). The age at onset ranged from 5 to 38 years, with 
nyctalopia being the most common symptom. The best- 
corrected visual acuity (BCVA) ranged from 20/25 to 20/800. 
Eight patients presented with cystoid macular edema (CME) 
during the clinical course. The clinical characteristics are 
presented in Table 1.

Molecular diagnosis

The majority of variants were missense (19 variants, 86.0%); 
the remainder included two splicing variants and one in-frame 
deletion. The most prevalent variant was c.551A>G, 
p.(Gln184Arg), which was identified in seven patients (21.0%) 
from four families. One patient presented with the homozygous 
splice donor variant c.530+1G>C, which was classified as 
pathogenic; subsequently, segregation analysis was conducted. 
Table 2 summarizes the variants and allele frequencies observed 
in this cohort (Supplementary Table S1).

Variant class

Two variants were classified as Class 1, eleven were classified 
as Class 2, one variant as Class 2/3, one variant as Class 2/4, three 

variants as unclassified predicted Class 2, and three variants 
remained unclassified (U) due to a lack of experimental evidence 
(Figure 1; Table 3). Class 2 was the most prevalent in this cohort. 
Twelve Class 2 patients presented with a generalized RP 
phenotype, five patients had a sector RP phenotype, and three 
patients were unavailable for clinical classification. Two patients 
harbored Class 1 variants and presented with generalized RP. 
Three variants were unclassified but predicted to be Class 2; five 
patients presented with a generalized RP phenotype, and one was 
an asymptomatic carrier. One patient harbored a variant 
combining classes 2 and 4 (Class 2/4) with generalized RP. 
Five patients harbored variants combining Classes 2 and 3 
(Class 2/3), and all exhibited a generalized RP phenotype.

Retinal imaging

Thirty-two patients exhibited a generalized RP phenotype. 
Color fundus photography revealed common findings, including 
bone-spicule pigment deposits, a mottled retinal fundus, and 
vessel attenuation. Among these patients, seven presented with 
macular edema on optical coherence tomography (OCT) scans. 
Figures 2, 3 illustrate fundus images of RHO-associated RP 
patients in this study.

Six patients presented with the sector RP phenotype. The 
retinal fundus typically exhibited bone-spicule pigment deposits 
in the inferior retina. One patient presented with macular edema. 
Figure 4 presents the findings for sector RP.

Discussion

RHO-associated RP is one of the most common and well- 
characterized forms of adRP [28, 29]. Clinically, RHO-associated 
RP can present with distinct phenotypic patterns, ranging from 
diffuse retinal degeneration with early night blindness and peripheral 
vision loss to sector RP, in which degeneration is confined to specific 
retinal regions and disease progression is slower [30].

TABLE 1 Clinical characteristics of RHO-associated RP patients.

Patients (n = 38) Generalized RP (n = 32) Sector RP (n = 6)

Families 26 5

Gender 
Male 
Female

12 (36.0%) 
21 (63.0%)

3 (50.0%) 
3 (50.0%)

Age of onset, mean (SD), years 18.1 (10.08) 27.5 (17.67)

First symptom Nyctalopia (54.0%) Nyctalopia (20.0%)

Baseline BCVA, mean (SD), LogMAR 0.43 (0.40) OD; 
0.50 (0.50) OS

0.28 (0.31) OD; 
0.08 (0.09) OS

Cystoid macular edema (CME) 7 (21.0%) 1 (20.0%)
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TABLE 2 Pathogenic and likely pathogenic variants of RHO-associated RP patients.

Nucleotide 
change

Protein 
change

Allele frequency 
(families)

Variant 
type

GnomAD total 
allele freq (%)a

ACMG classification/ 
criteria

First 
report

c.45T>G p.(Asn15Lys) 1 (1) Missense - Likely pathogenic/PS1, PM2, 
PM5, PP3

[16]

c.137T>G p.(Leu46Arg) 3 (1) Missense - Pathogenic/PS4, PM1, 
PM2, PP3

[17]

c.272_283del p.(Thr92_Leu95del) 1 (1) In-frame 
deletion

- Likely pathogenic/PM1, 
PM2, PM4

This study

c.316G>A p.(Gly106Arg) 4 (4) Missense 0.000411 Pathogenic/PS1, PS3, PM1, 
PM2, PM5

[18]

c.317G>T p.(Gly106Val) 4 (3) Missense - Likely pathogenic/PM2, PM5, 
PP2, PP3, PP5

This study

c.341G>T p.(Gly114Val) 1 (1) Missense - Likely pathogenic/PM1, PM2, 
PM5, PP3, PP5

[19]

c.403C>T p.(Arg135Trp) 5 (2) Missense 0.000137 Likely pathogenic/PM1, PM2, 
PM5, PP3, PP5

[20]

c.404G>T p.(Arg135Leu) 1 (1) Missense - Likely pathogenic/PM1, PM2, 
PM5, PP3, PP5

[21]

c.491C>T p.(Ala164Val) 1 (1) Missense 0.0003979 Pathogenic/PS4, PM2, PM5, 
PM1, PP2, PP5

[15]

c.509C>G p.(Pro170Arg) 1 (1) Missense 0.0000684 Pathogenic/PS3, PM1, PM2, 
PM5, PP3

[18]

c.512C>A p.(Pro171Gln) 1 (1) Missense - Pathogenic/PS3, PM1, PM2, 
PM5, PP3

[18]

c.512C>T p.(Pro171Leu) 1 (1) Missense - Pathogenic/PS3, PM1, PM2, 
PM5, PP3

[18]

c.530+1G>C (p.?) 2 (1) Splicing - Pathogenic/PVS1, PM2, PP5 This study

c.533A>G p.(Tyr178Cys) 1 (1) Missense 0.0000684 Pathogenic/PS3, PM1, PM2, 
PM5, PP3

[22]

c.551A>G p.(Gln184Arg) 7 (4) Missense 0.000657 Likely pathogenic/PM1, PM2, 
PP2, PP3

[23]

c.557C>G p.(Ser186Trp) 1 (1) Missense - Likely pathogenic/PM1, PM2, 
PM5, PP2, PP3

[24]

c.560G>C p.(Cys187Ser) 1 (1) Missense - Likely pathogenic/PM1, PM2, 
PM5, PP2, PP3

[25]

c.568G>A p.(Asp190Asn) 3 (3) Missense 0.000137 Pathogenic/PS3, PM1, PM2, 
PM5, PP3

[26]

c.800C>T p.(Pro267Leu) 1 (1) Missense 0.0000684 Pathogenic/PS4, PM1, PM2, 
PM5, PP3,

[25]

c.937-2A>T (p.?) 1 (1) Splicing - Pathogenic/PVS1, PM2, PP5 This study

c.1033G>C p.(Val345Leu) 2 (2) Missense 0.0000684 Pathogenic/PS1, PM1, 
PM2, PM5

[15]

c.1040C>T p.(Pro347Leu) 1 (1) Missense 0.000137 Likely pathogenic/PM1, PM2, 
PM5, PP3, PP5

[27]

aAccessed on December 2025.
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This study describes the first Brazilian cohort with RHO- 
associated RP, and the clinical and molecular spectrum related to 
retinal degeneration.

Approximately 60.0% of patients presented with a family 
history of RP. In total, 85% of patients had generalized RP, the 
most prevalent phenotype. Five patients had sector RP affecting 
the inferior retina, which is the most commonly affected retinal 
region. One hypothesis is that light exposure, particularly in the 
lower retinal regions that receive more direct illumination, 

contributes to disease progression [30]. In support of this 
hypothesis, studies using animal models of RHO-associated 
RP have shown that complete light deprivation can reduce the 
extent of outer retinal degeneration [31, 32].

Rhodopsin is a visual receptor composed of seven 
transmembrane helices connected by three extracellular loops 
on the intradiscal side and three intracellular loops on the 
cytoplasmic side [24]. Misfolding and ER retention are the 
most prevalent pathogenic mechanisms (Class 2) [33]. Class 

FIGURE 1 
Schematic of the secondary structure of rhodopsin, Adapted from “Schematic rod photoreceptor and rhodopsin structure. (C) Two-dimensional 
representation of human Rho structure. Residues mutated in RP are indicated with orange circles. The Lys296, which covalently binds the 11-cis- 
retinal, is shown with a yellow circle filled with orange. The P23H mutation is shown with a red circle filled with orange” by Maria Azam and Beata 
Jastrzebska, licenced under CC BY 4.0. The seven-fold transmembrane helices, plus an eighth helix parallel to the membrane surface, are 
colored in green boxes. The intracellular side (cytoplasmic) contains three intracellular loops (ICL1, ICL2, and ICL3) and the carboxy-terminus 
(C-terminus) of the polypeptide chain. The extracellular side (intradiscal) contains the other three extracellular loops (ECL1, ECL2, and ECL3) and the 
amino-terminal end (N-terminus). The position of amino acid residues affected by RHO variants found in this cohort is indicated by colored circles. 
Class 1 variants (blue circles), Class 2 variants (orange circles), Class 3 variants (green circles), and Class 4 variants (red circles) are indicated with their 
location in the protein. Where there is evidence for more than one class type, it is shown with a vertical color split. Those with predicted effects are 
shown with a horizontal color split. Unclassified variants are indicated with gray circles.

Experimental Biology and Medicine 
Published by Frontiers 

Society for Experimental Biology and Medicine 05

Amaral et al. 10.3389/ebm.2026.10893

https://www.mdpi.com/2073-4409/14/1/49
https://www.mdpi.com/2073-4409/14/1/49
https://www.mdpi.com/2073-4409/14/1/49
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/ebm.2026.10893


2 variants were the most prevalent, with both generalized (63.0%) 
and sector (26.0%) RP phenotypes.

Several RHO-associated variants are responsible for sector RP; 
these are exclusively missense mutations, predominantly located 
in the intradiscal domain [30, 34]. Accordingly, the majority of 
patients in this cohort harbored intradiscal-domain missense 
variants. The exception was a sector RP patient with a 
previously unreported deletion variant in the second alpha- 
helix (TM2). The c.316G>A, p.(Gly106Arg) and c.568G>A, 
p.(Asp190Asn) variants, both frequently described as sector RP 
[10, 34], were identified in patients presenting with generalized 
RP. Similarly, the variant c.317G>T, p.(Gly106Val) was identified 
in two patients with sector RP and two with generalized RP. This 
is a previously catalogued variant without published clinical 
correlation (dbSNP rs1578278417). This missense variant is 
also a Class 2 variant, located intradiscally in the first 
extracellular loop and affecting codon 106. In this analysis, no 
variant was exclusive to the sector RP cases.

Cytoplasmic-domain variants are typically associated with a 
severe RP phenotype, characterized by the early rod and cone 
photoreceptor degeneration. In contrast, mutations affecting the 
extracellular domain are generally linked to a milder clinical 
presentation, with relatively preserved photoreceptor function 
and a slower rate of disease progression [35]. Class 1 variants in 
this cohort presented a mild phenotype, generalized RP, and early 
onset of symptoms. Class 2 variants are the most common, 
demonstrating a broader spectrum of clinical severity. Class 
3 variants demonstrate early disease onset and a more severe 
phenotype. Variants in the N-terminal segment are sometimes 
associated with a relatively mild disease course, with RP developing 
later in life and slowly advancing symptoms [15]. In contrast, the 
patient described here with this variant location presented with 
generalized RP, high myopia, and early-onset symptoms, with 
relatively preserved vision until the sixth decade of life.

In this study, the c. 551A > G, p. (Gln184Arg) variant was the 
most frequent variant, found in seven patients from four families. 

TABLE 3 Variant class and phenotype correlation.

Nucleotide change Protein change Location Suggested class Phenotype (n)

c.45T>G p.(Asn15Lys) Intradiscal (N-terminal segment) 2/4 generalized RP (1)

c.137T>G p.(Leu46Arg) 1st alpha helix (TM1) U/P2 generalized RP (2)

c.272_283del p.(Thr92_Leu95del) 2nd alpha helix (TM2) U sector RP (1)

c.316G>A p.(Gly106Arg) Intradiscal (1st extracellular loop) 2 generalized RP (2)/sector RP (2)

c.317G>T p.(Gly106Val) Intradiscal (1st extracellular loop) 2 generalized RP (2)/sector RP (2)

c.341G>T p.(Gly114Val) 3rd alpha helix (TM3) U/P2 generalized RP (1)

c.403C>T p.(Arg135Trp) 3rd alpha helix (TM3) 2/3 generalized RP (5)

c.404G>T p.(Arg135Leu) 3rd alpha helix (TM3) 3 generalized RP (1)

c.491C>T p.(Ala164Val) 4th alpha helix (TM4) 2 N/A

c.509C>G p.(Pro170Arg) 4th alpha helix (TM4) 2 N/A

c.512C>A p.(Pro171Gln) 4th alpha helix (TM4) 2 generalized RP (1)

c.512C>T p.(Pro171Leu) 4th alpha helix (TM4) 2 generalized RP (1)

c.530+1G>C (p.?) - U generalized RP (1)

c.533A>G p.(Tyr178Cys) Intradiscal (2nd extracellular loop) 2 generalized RP (1)

c.551A>G p.(Gln184Arg) Intradiscal (2nd extracellular loop) U/P2 generalized RP (1)

c.557C>G p.(Ser186Trp) Intradiscal (2nd extracellular loop) 2 generalized RP (1)

c.560G>C p.(Cys187Ser) Intradiscal (2nd extracellular loop) 2 generalized RP (1)

c.568G>A p.(Asp190Asn) Intradiscal (2nd extracellular loop) 2 generalized RP (2)/sector RP (1)

c.800C>T p.(Pro267Leu) 6th alpha helix (TM6) 2 generalized RP (1)

c.937-2A>T (p.?) - U generalized RP (1)

c.1033G>C p.(Val345Leu) Cytoplasm (C-terminal) 1 N/A

c.1040C>T p.(Pro347Leu) Cytoplasm (C-terminal) 1 generalized RP (1)

U, unclassified; P2, predicted class 2; N/A, not available.
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The second most common variant was c.403C>T, p.(Arg135Trp), 
which was identified in five patients from two families. These two 
variants are present in European, American, and Asian populations. 
This is consistent with the literature, as missense mutations are the 
most common type of variant in the RHO gene [36].

RHO is one of the few genes that cause both adRPs and 
arRPs. The recessive form is typically associated with a complete 
loss of rhodopsin function, whereas the dominant form results 
from a gain-of-function and/or a dominant-negative mechanism 
[15]. To date, eight homozygous variants have been described in 
the RHO gene: c.448G>A, p.(Glu150Lys [37]; c.759G>T, 
p.(Met253Ile) [38]; c.931A>G, p.(Lys311Glu) [39]; c.482G>A, 
p.(Trp161*) [40]; c.745G>T, p.(Glu249*) [41]; c.936+1G>T (p.?) 
[42]; c.408C>A, p.(Tyr136*) [43]; and c.82C>T, p.(Gln28*) [23].

The underlying mechanisms by which missense mutations 
cause the recessively inherited form remain unclear; it is possible 
that missense changes are mild mutations that only become 
pathogenic when present on both alleles.

Aberrant splicing frequently generates premature termination 
codons (PTCs), which can result in the production of truncated 
proteins [44]. However, PTCs can trigger nonsense-mediated mRNA 
decay (NMD), an essential mRNA quality-control mechanism that 

clears flawed transcripts. Typically, mRNA transcripts are targeted 
for accelerated degradation by NMD when a PTC is located 
50–55 nucleotides downstream of the final exon-exon junction 
[45]. This process prevents the translation of transcripts into 
potentially harmful truncated proteins, although the efficiency of 
this process is currently unknown.

Hernan et al. described that the adRP-causing RHO variant 
c.937-1G>T abolishes the canonical splice-acceptor site in intron 
4 [46]. Consequently, an aberrant exonic splice-site was used 
during transcription, leading to the production of a protein 
lacking 13 amino acids. In contrast, the c.936+1G>T variant, 
located at the donor site of the same intron, results in the 
complete skipping of exon 4 and causes the recessive form of 
the disease.

In our cohort, we identified the c.937-2A > T variant, 
affecting the splice-acceptor site of intron 4. This is a novel 
allele at a known pathogenic site (dbSNP rs1578281565). Similar 
to the previously reported c.937-1G>T variant, the c.937-2A>T 
variant causes adRP with a severe generalized phenotype. 
Notably, the transcript resulting from this variant is predicted 
to evade NMD. Since the variant is located in the final intron, any 
resulting PTC would lie downstream of the final exon-exon 

FIGURE 2 
(A) A 31-year-old patient with a c.1040C>T, p.(Pro347Leu) variant presenting with BCVA of 20/25 OD and 20/30 OS, pigmentary mottling, and 
peripheral chorioretinal atrophy with bone-spicule hyperpigmentation. (B) A 33-year-old patient with a c.403C>T, p.(Arg135Trp) variant (BCVA: 20/ 
40 in both eyes) with peripapillary and peripheral chorioretinal atrophy with narrowed vessels. (C) A 45-year-old patient with c.530+1G>C (p.?) in 
homozygosity (BCVA: 20/80 OD; 20/100 OS) and a more severe phenotype of classical RP. (D) A 47-year-old patient with a c.568G>A, 
p.(Asp190Asn) variant (BCVA: 20/40 in both eyes) with pigmentary mottling and peripheral chorioretinal atrophy. (E) A 60-year-old patient with a 
c.557C>G, p.(Ser186Trp) variant (BCVA: 20/400 in both eyes) with diffuse pigmentary bone-spicules and peripheral chorioretinal atrophy. (F) An 80- 
year-old patient with a c.316G>A, p.(Gly106Arg) variant (BCVA: 20/100 in both eyes) with advanced classical RP findings and preserved central vision 
in the macular area.
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junction, thus failing to meet the canonical ~50 nt rule for NMD 
targeting. Although the exact consequences require functional 
studies, this NMD evasion suggests the production of a 
truncated protein.

In the context of homozygous RHO variants, NMD 
activation may lead to a marked reduction or complete 
absence of rhodopsin mRNA, resulting in functional null 
alleles [47]. Retinal degeneration in these cases may arise from 
the loss of rhodopsin expression rather than from the dominant- 
negative or gain-of-function effects typically associated with 
certain heterozygous RHO cases [47].

Another previously reported splicing variant is c.531-2A>G 
[46, 48]. Due to its intron 2 location, this variant was initially 
anticipated to undergo NMD and, consequently, manifest as arRP. 
However, this specific allele has been documented in the Spanish 
population, where it is linked to full adRP penetrance [48]. In 
support of this dominant mechanism, in vitro studies conducted by 
Hernan et al. demonstrated that the transcripts generated as a 
consequence of the c.531-2A>G variant were not entirely abolished 
by NMD. Consequently, a truncated protein is expressed, 
representing the probable cause of the adRP phenotype [46].

In this Brazilian cohort, a previously unreported variant was 
located in intron 2 and affected the splice donor site. The 
homozygous c.530+1G>T variant was detected in one patient 
diagnosed with RP at 25 years of age. The patient presented with 
early-onset symptoms, including nyctalopia, starting at 5 years of 

age. Unlike the c.531-2A>G variant, the c.530+1G>T variant 
appeared to be completely targeted by NMD. This hypothesis is 
supported by the inheritance pattern: only patient who possesses 
both affected alleles (homozygous) presents with the phenotype, 
whereas patients who carry a single heterozygous variant, such as 
this specific patient’s mother, remains asymptomatic.

The c.1040C>T, p.(Pro347Leu) variant is the most frequently 
observed causative variant worldwide. It has also been identified 
in other ethnic groups [49]. In this Brazilian cohort, only one 
patient was identified with this variant, with generalized RP and a 
mild symptom phenotype.

RHO c.68C>A, p.(Pro23His) was the first variant reported at 
high frequency for this gene in the United States [2]. Based on a 
meta-analysis of diagnosed cases reported in the literature, the 
estimated clinical prevalence of adRP due to RHO c.68C>A, p 
(Pro23His) is approximately 2,000–3,000 patients [50]. In 
comparison, the number of individuals heterozygous for this 
variant in the United States was 6,176 [50].

Several techniques have been explored to treat RHO- 
associated retinopathy, many of which involve the c.68C>A, 
p.(Pro23His) variant [51–53], which has been 
comprehensively elucidated at the molecular level, with robust 
animal models available and a high potential clinical impact in 
the U.S. population.

However, the frequency of this variant is low in other 
populations. It appears to be extremely rare or even absent in 

FIGURE 3 
Color fundus and SD-OCT image of a 61-year-old patient carrying the c.551A>G, p.(Gln184Arg) variant showing diffuse classical RP findings and 
atrophy of the retinal layers, with the ellipsoid zone relatively preserved in the foveal area. CME is observed in the left eye.
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FIGURE 4 
Color fundus (A) and fundus autofluorescence (FAF) (B) of a 58-year-old patient presenting with BCVA of 20/25 in both eyes and sectoral inferior 
RP. The patient has the heterozygous variant c.568G>A, p.(Asp190Asn). (C) A Humphrey 24–2 grayscale visual field map of the same patient with 
bilateral and symmetrical superior visual field defects, showing anatomo-functional correlation with the fundus images.
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populations outside the United States, with apparent geographical 
restrictions on this variant. A study of 300 Chinese families with RP 
found that, while RHO variants accounted for approximately 2.7% of 
cases, the c.68C>A, p.(Pro23His) variant was not reported in that 
population or in other Asian ethnic groups [54], such as Korean [55] 
and Japanese [56] cohorts, and only one case was reported in a large 
European cohort [57]. However, this was not observed in the 
Brazilian cohort.

This study has some limitations. One major limitation is the 
lack of functional assays to directly evaluate the molecular 
consequences of the identified RHO variants. Without 
experimental validation such as RNA expression analyses, 
minigene splicing assays, or protein quantification, it is 
impossible to conclusively determine whether the observed 
variants lead to RNA decay, aberrant splicing, or residual 
protein production. Functional investigations are imperative 
to confirm the molecular consequences of these variants and 
to clarify their contribution to phenotypic variability.

The genotype–phenotype correlations observed in this study 
should be interpreted as descriptive rather than causal or definitive 
associations, given the observational nature of the data and the 
limited sample size. Further genetic analyses of larger cohorts are 
required to better understand their pathophysiology.

In conclusion, this study provides valuable insights into the 
clinical and genetic characteristics of RHO-associated RP within 
the Brazilian population while broadening the documented 
spectrum of disease-causing RHO gene variants.
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