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Abstract 

While immune responses related to infections have been linked to ocular diseases, 

their causal role remains to be established. This study aimed to assess the causal 

relationship between antibody-mediated immune responses to infectious agents 

and five ocular conditions: chronic iridocyclitis (CIR), scleritis, wet age-related 

macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. We 

performed a two-sample Mendelian randomization (MR) analysis using GWAS 

data to assess causality between antibody responses to 46 pathogens and five 

ophthalmic diseases. The instrumental variables were Single nucleotide 

polymorphisms (SNPs). Causal estimates were primarily generated via the 

inverse-variance weighted method, supplemented by MR-Egger and weighted 

median methods. A Bonferroni-corrected threshold of P < 2.17 × 10−4 was applied. 

Sensitivity analyses included Cochran’s Q, MR-Egger, and MR-PRESSO for 

heterogeneity and pleiotropy. Reverse MR was performed to assess 

bidirectionality. Forward MR identified causal effects of infection-induced 

immune responses on ocular diseases. Epstein-Barr virus (EBV) ZEBRA 

antibodies were positively correlated with CIR, whereas Varicella zoster virus 

glycoproteins E and I antibodies were associated with scleritis and DR as risk 

factors. Genetically predicted anti-polyomavirus 2 IgG seropositivity (JCV IgG+) 

was identified as a risk factor for DR, wet AMD and glaucoma. In contrast, The EBV 

EBNA-1 antibody is associated with DR, wet AMD, and glaucoma as a protective 

factor, whereas the EBV VCA18 antibody is negatively associated with wet AMD. 

Reverse MR analysis indicated that DR may elevate JCV VP1 antibody levels. This 
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study provides the first genetic evidence of a causal link between pathogen- 

specific immune responses and ocular diseases, offering a foundation for targeted 

immunomodulatory and personalized therapies.
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Impact statement

This research systematically elucidates, via Mendelian 
randomization, the causal relationships between pathogen- 
specific antibody responses and five significant ophthalmic 
diseases, offering essential genetic evidence for the discipline. 
This study confirms the significant role of infection-induced 
immune responses in the pathogenesis of chronic eye diseases 
and elucidates the specific mechanisms of viruses such as EBV, 
VZV, and JCV in various ocular conditions. It shifts the 
paradigm from traditional risk factors to infection-related 
immune mechanisms in understanding disease etiology. The 
findings provide a theoretical basis for immunological 
prevention and personalized treatment of ophthalmic diseases, 
particularly facilitating the development of targeted interventions 
against specific pathogen-induced immune responses.

Introduction

Chronic ocular conditions, including chronic iridocyclitis (CIR), 
scleritis, age-related macular degeneration (AMD), diabetic 
retinopathy (DR), and glaucoma, are significant contributors to 
vision impairment and blindness globally [1–5]. These diseases 
considerably reduce patients’ quality of life and impose a significant 
societal burden. Despite their distinct clinical manifestations and 
pathological features, increasing evidence suggests that immune 
dysregulation and chronic inflammation constitute a common 
pathophysiological basis among these conditions [6, 7].

Immune responses are fundamental to the pathogenesis of the 
ocular diseases discussed. Iridocyclitis and scleritis are frequently 
associated with systemic autoimmune disorders, including 
rheumatoid arthritis and systemic lupus erythematosus [8, 9]. The 
pathogenesis encompasses infection, immune dysregulation, 
inflammatory processes, and genetic susceptibility, with immune 
reactivity serving as a pivotal driving factor [10]. Significant immune 
and inflammatory mechanisms have been identified in diseases 
traditionally attributed to vascular or metabolic abnormalities. 
Dysregulated immunity, microangiopathy, and metabolic 
disturbances collectively contribute to disease development in DR 
[11]. AMD is a neurodegenerative condition that impacts the eye. 
Alongside mitochondrial dysfunction, oxidative stress, and 
autophagy defects, immune-mediated inflammatory conditions are 
recognized as factors associated with AMD [12, 13]. Additionally, in 
glaucoma, a neurodegenerative condition marked by irreversible 

vision loss resulting from optic nerve atrophy and retinal ganglion 
cells (RGCs) death, dysregulated immune signaling and T-cell- 
mediated autoimmunity are implicate [14].

Infectious factors are gaining attention as a potential etiological 
mechanism for the previously mentioned ocular diseases [15, 16]. 
Pathogens can induce systemic immune and inflammatory 
responses; thus, chronic or latent infections may lead to ocular 
pathology through immune-mediated mechanisms. For example, 
Epstein-Barr virus specific immune responses have been linked to 
autoimmune uveitis [17], and ocular herpes zoster virus infection 
can lead to a range of conditions such as conjunctivitis, uveitis, 
episcleritis, keratitis, and retinitis [18]. Additionally, research 
indicates that viral infections may aggravate ocular 
neurodegeneration by triggering neuroinflammation and 
disturbing neuronal protein homeostasis [19].

Nevertheless, despite an exhaustive search, no studies have 
definitively established a causal link between antibody-mediated 
immune responses—particularly those triggered by infection—and 
ocular diseases. There is therefore a clear need for robust causal 
inference approaches to clarify these associations. Mendelian 
randomization (MR), an epidemiological technique that utilizes 
genetic variants as instrumental variables, can elucidate these 
relationships while minimizing confounding and reverse 
causality [20, 21].

This study aims to utilize two-sample Mendelian 
randomization analysis to examine the causality between 
46 antibody-mediated immune traits and five ocular disorders: 
chronic iridocyclitis, scleritis, wet age-related macular 
degeneration, diabetic retinopathy, and glaucoma.

Materials and methods

Data selection and sources

To assess causality, we conducted a Mendelian randomization 
analysis using genetically predicted antibody responses to infections 
as exposures and the five ocular diseases as outcomes, selecting 
associated SNPs as instrumental variables. Summary data on 
antibody-mediated immune responses were obtained from the 
GWAS Catalog.1 These data originated from the study by 

1 https://www.ebi.ac.uk/gwas/
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Butler-Laporte et al. [22], who performed serological profiling on 
9,724 adults of European ancestry from the UK Biobank using 
13 pathogens to define 46 phenotypes. Details of all phenotypes are 
provided in Supplementary Table S1. Summary statistics for the five 
ocular diseases were sourced from the FinnGen GWAS.2 All 
participants were of European ancestry. Case and control 
numbers were as follows: chronic iridocyclitis (1,869/473,095), 
scleritis (441/473,095), neovascular AMD (6,699/331,070), 
diabetic retinopathy (14,142/82,287), and glaucoma (26,591/ 
473,757). Details of the case and control groups for each eye 
disease are shown in Supplementary Table S2.

Instrumental variable selection

In our MR analysis, single nucleotide polymorphisms 
(SNPs) served as instrumental variables (IVs), following 
three critical assumptions: (1) association with the 
exposure, (2) independence from confounders, and (3) 
influence on the outcome exclusively through the exposure 
(Figure 1). Rigorous selection of instrumental variables (IVs) 
is essential for ensuring the robustness of Mendelian 
randomization (MR) analysis. Initially, instrumental 
variables (IVs) must exhibit a robust association with the 
exposure, with the standard threshold for genome-wide 
significance established at p < 5 × 10−8. To maintain an 
adequate number of instrumental variables for each 
phenotype, we adjusted the threshold to p < 5 × 10−6. A 

screening procedure was conducted to eliminate the effects of 
linkage disequilibrium (LD), confirming that the chosen 
SNPs displayed low LD (r2 < 0.001 within a 
10,000 kb window) [23].

The strength of the IVs was assessed using the F-statistic, 
defined as F � R2 (N − K − 1)/K(1 − R2). R2 is defined as the 
proportion of variance in exposure explained, where N denotes 
the sample size and K indicates the number of instruments. The 
formula for calculating R2 is as follows: 
Rˆ2 � 2 × MAF × (1 − MAF) × (β/SD)2̂. In the equation, MAF 
represents the minor allele frequency, β denotes the effect size, 
and SD indicates the standard deviation [24]. To rule out weak 
instrument bias, all included SNPs were ensured to have 
F-statistics greater than 10.

MR analysis

We conducted forward MR analyses to evaluate causal 
relationships between genetically predicted infection-related 
antibody responses and five ocular diseases, employing five 
methodologies: inverse-variance weighted (IVW), MR-Egger, 
weighted median, simple mode, and weighted mode. The 
IVW method was selected as the primary approach due to its 
assumption of valid instruments without horizontal pleiotropy, 
while the other methods functioned as complementary analyses 
[25]. All analyses were performed using R (version 4.5.1) with the 
TwoSampleMR package (version 0.6.22). The presence of 
46 immune phenotypes associated with five ocular diseases as 
outcomes heightens the likelihood of Type I errors due to 
repeated testing. Consequently, we utilized Bonferroni 
correction, which is a more rigorous method than FDR 

FIGURE 1 
The three main assumptions of Mendelian randomization. DR, diabetic retinopathy; Wet AMD, Wet age-related macular degeneration; SNPs: 
single-nucleotide polymorphisms; MR, Mendelian randomization; LD, linkage disequilibrium; MR-PRESSO, Mendelian randomization-pleiotropy 
residual sum and outlier.

2 https://r12.finngen.fi/
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adjustment, for multiple significance testing. A p-value of less 
than 2.17 × 10−4 (0.05/46/5) was considered statistically 
significant.

Reverse MR was conducted to assess the causal 
relationships between five ocular diseases (as exposures) 
and antibody-mediated immune responses (as outcomes), 
adhering to an analytical procedure aligned with the 
forward MR approach. The same Bonferroni correction 
method is employed.

Sensitivity analysis

To evaluate the validity of instrumental variables and 
robustness of the results, we conducted comprehensive 
sensitivity analyses. Heterogeneity was assessed using 
Cochran’s Q statistic from IVW and MR-Egger regression, 
with P > 0.05 indicating no significant heterogeneity [26]. 
Horizontal pleiotropy was examined via the MR-Egger 
intercept test, where P > 0.05 suggested no evidence of 
directional pleiotropy, and the MR-PRESSO global test was 
applied to identify and remove outliers. If outliers existed, the 
MR analysis was repeated after eliminating these outliers [27, 28]. 
Additionally, leave-one-out analyses were performed to assess 
whether overall associations were driven by individual influential 
variants and to visualize the contribution of each SNP. To 
evaluate the overall robustness, funnel plots were generated 
using R (version 4.5.1) to assess the symmetry of the SNPs.

Results

The MR analysis indicates that various virus-mediated 
antigen-antibody responses have a genetically predicted 
causal association with the risk of developing 
ocular diseases.

Risk effects of infection-related 
antibody responses

Based on forward MR analyses, Epstein-Barr virus (EBV) 
ZEBRA antibody levels, varicella-zoster virus glycoprotein E and 
I (VZV gE & gI Ab) antibody levels, and anti–JC virus IgG 
seropositivity (JCV IgG+) were identified as risk factors for 
multiple ocular diseases. The results of sensitivity analyses and 
visualisations are presented in Supplementary Table S3, 
Supplementary Figures S1, S2.

Causal effect of EBV ZEBRA antibodies on 
chronic iridocyclitis

Genetically predicted levels of EBV ZEBRA antibodies 
levels increased the risk of CIR (OR = 1.506, 95% CI: 

1.276–1.778, PIVW = 1.292e-06). This finding was 
consistent using weighted median and weighted mode 
methods (Figures 2, 3). Although sensitivity analyses 
indicated heterogeneity, no horizontal pleiotropy was 
detected by the MR-Egger intercept test. The association 
remained significant after outlier removal via MR-PRESSO 
and was robust in leave-one-out analysis, collectively 
supporting the reliability of the causal inference.

Causal effects of VZV gE & gI antibodies on 
scleritis and DR

VZV gE & gI antibody levels were causal risk factors for both 
scleritis (OR = 1.529, 95% CI: 1.228–1.904, p = 1.473e-04) and 
DR (OR = 1.776, 95% CI: 1.343–2.350, PIVW = 5.689e-05) 
(Figures 2, 3). For scleritis, no heterogeneity or horizontal 
pleiotropy was detected. Cochran’s Q test showed that there 
was heterogeneity for DR, but no horizontal pleiotropy was 
found. Both causal estimates remained significant after MR- 
PRESSO outlier removal and were robust in leave-one- 
out analyses.

Causal effects of JCV IgG+ on DR, wet AMD, 
and glaucoma

Additionally, genetically predicted JCV IgG+ 
significantly increased the risks of DR (OR = 1.533, 95% 
CI: 1.300–1.808, PIVW = 3.733e-07), wet AMD (OR = 1.182, 
95% CI: 1.110–1.258, PIVW = 1.529e-07), and glaucoma (OR = 
1.073, 95% CI: 1.046–1.100, PIVW = 3.537e-08) (Figures 2, 3). 
These causal estimates were consistently supported by the 
weighted median method and showed no evidence of 
horizontal pleiotropy. Despite some heterogeneity, the 
causality remained significant after outlier removal and 
were robust in leave-one-out sensitivity analyses, 
confirming the stability of the results.

Protective effects of infection-related 
antibody responses

Causal effects of EBV EBNA-1 antibodies on DR, 
wet AMD, and glaucoma

Conversely, genetically predicted EBV EBNA-1 antibody 
levels causally reduced the risk of DR (OR = 0.445, 95% CI: 
0.389–0.532, PIVW = 1.019e-22), wet AMD (OR = 0.778, 95% CI: 
0.720–0.840, PIVW = 1.343e-10), and glaucoma (OR = 0.922, 95% 
CI: 0.889–0.956, PIVW = 1.675e-05).

Causal effect of EBV VCA p18 antibodies on 
wet AMD

Similarly, genetically predicted EBV VCA p18 antibody levels 
were a protective factor against wet AMD (OR = 0.822, 95% CI: 
0.746–0.906, PIVW = 7.875e-05). These causal relationship were 
consistently supported by weighted median and weighted mode 
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methods (Figures 3, 4). While significant heterogeneity was 
observed, MR-Egger intercept tests revealed no directional 
pleiotropy. The results remained significant following MR- 
PRESSO outlier correction, confirming the stability of these 
protective relationships (Supplementary Table S3). The leave- 
one-out sensitivity analysis and funnel plot confirmed the 
robustness of the results (Supplementary Figures S1, S2).

Reverse MR analysis

To evaluate reverse causation, we performed reverse MR 
analyses to assess the effects of ocular diseases on viral antibody 
levels. DR had a positive causal effect on JCV VP1 antibody levels 
after strict multiple testing correction (OR = 1.195, 95% CI: 
1.105–1.292, P = 8.150e-06), corresponding to a 19.5% increased 
risk of elevated JCV VP1 antibodies in DR patients. Consistency 
across MR-Egger, weighted median, IVW, and weighted mode 
methods strengthened causal credibility (Figures 3, 5). While the 
MR-Egger intercept indicated potential minor horizontal 
pleiotropy, neither the MR-PRESSO nor Cochran’s Q test 

showed significance (Supplementary Table S3; Supplementary 
Figures S1, S2).

A nominally significant causal relationship was observed 
between CIR and EBV ZEBRA antibody levels (OR = 1.082, 
95% CI: 1.009–1.161, P = 0.025). However, this association did 
not survive strict multiple testing correction (Bonferroni- 
corrected threshold P < 0.0021) and should therefore be 
interpreted with caution.

Discussion

This bidirectional MR study provides genetic evidence 
supporting causal relationships between infection-related 
antibody responses and ocular disorders. Specifically, elevated 
EBV ZEBRA, VZV gE & gI, and JCV IgG+ antibody levels 
increased the risk of chronic iridocyclitis (CIR), scleritis, DR, wet 
AMD, and glaucoma, whereas EBV EBNA-1 and VCA 
p18 antibodies exhibited protective effects. Reverse MR 
analysis further indicated that DR contributes to higher JCV 
VP1 antibody levels.

FIGURE 2 
Forest plot visualization of the Positive causal effect of antibody-mediated immune responses on five eye diseases. DR, diabetic retinopathy; Wet 
AMD, Wet age-related macular degeneration; MR, Mendelian randomization; SNPs, single-nucleotide polymorphisms; OR, odds ratio; CI, confidence 
interval; *p- value <0.05; **p- value <0.00021.
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Potential mechanisms connecting EBV 
ZEBRA antibodies to CIR

EBV is a prevalent pathogen, infecting more than 90% of 
the global population, and is linked to several autoimmune 
diseases and malignancies [29]. We present genetic evidence 
indicating that the ZEBRA antibody, derived from the 
immediate-early gene BZLF1 that triggers the viral lytic 
cascade, causally increases the risk of CIR through various 
potential mechanisms.

One key mechanism is molecular mimicry. EBV proteins 
contain epitopes that resemble human proteins, and viral 
reactivation causes cell death and self-antigen release [30]. 
Upon presentation by antigen-presenting cells (APCs), these 
antigens may activate autoreactive T cells, which can cross- 
react with ocular tissues and trigger iridocyclitis. Studies have 

shown that in uveitis patients, Th1 cells activate macrophages 
via IFN-γ, while Th17 cells sustain chronic inflammation 
through IL-17. Together, these responses promote leukocyte 
recruitment and local inflammatory cascades, ultimately 
leading to tissue damage via oxidative stress and pro- 
inflammatory cytokine release [31, 32].

Secondly, by modulating signaling pathways, EBV 
promotes B cell differentiation into T-bet+ B cells [30]. 
These cells subsequently produce pathogenic IgG1/ 
IgG3 autoantibodies and IFN-γ, establishing a pro- 
inflammatory feedback loop [33]. Their additional role in 
disrupting tissue barriers may permit CXCR3+ B cell 
migration across the blood-aqueous barrier, initiating 
ocular inflammation. This is corroborated by the marked 
increase in IL-6 and chemokines (CXCL13, CCL8, CCL13, 
CCL20) in the aqueous humor of uveitis patients [34].

FIGURE 3 
Scatter plots for the causal relationship of antibody-mediated immune responses and five eye diseases. Scatterplots demonstrate the influence 
of SNPs on different parameters using five MR methods: inverse variance weighting, MR-Egger, simple mode, weighted median, and weighted mode. 
Each subplot reflects the relationship between SNP effects on the horizontal axis (immunophenotype) and ophthalmic diseases on the vertical axis. 
Black dots represent specific SNP effect estimates, whereas gray bands indicate the uncertainty linked to these estimates. The results of linear 
regression for the 5 methods are shown by lines of different colors. Panels correspond to: (A) Epstein-Barr virus (EBV) ZEBRA antibody with chronic 
iridocyclitis (CIR); (B) Varicella zoster virus (VZV) glycoprotein E & I antibody with scleritis; (C) Anti-polyomavirus 2 IgG seropositivity (JCV IgG+) with 
diabetic retinopathy (DR); (D) VZV gE & gI antibody with DR; (E) JCV IgG+ with wet age-related macular degeneration (AMD); (F) JCV IgG+ with 
glaucoma; (G) EBV EBNA-1 antibody with DR; (H) EBV EBNA-1 antibody with wet AMD; (I) EBV VCA p18 antibody with wet AMD; (J) EBV EBNA-1 
antibody with glaucoma; (K) Reverse MR analysis for DR with JCV VP1 antibody.
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Additionally, the EBV early lytic protein BALF0/1 hijacks 
host caveolin-mediated endocytosis and ERAD pathways 
during viral replication to degrade the B-cell receptor 
complex [35]. Thus, BZLF1 (ZEBRA)-driven promoter 
activation likely upregulates BALF0/1, disrupting B-cell 
function, promoting viral release, and ultimately causing 
local ocular immune dysregulation that contributes to 
chronic iridocyclitis.

The link between EBV specific immune responses and 
autoimmune uveitis is further supported by Hendrikse et al. 
[17], who observed elevated antibody levels against the 
RRPFFHPV motif of Epstein–Barr virus nuclear antigen 1 

(EBNA-1) in pediatric uveitis patients carrying the *HLA- 
DRB1*15:01* risk allele, with the strongest IgG signals 
detected in those with non-anterior uveitis. This strongly 
suggests a role for EBNA-1–directed immunity in certain 
forms of autoimmune uveitis. In contrast, our analysis 
supports EBV EBNA-1 antibody levels as a protective 
factor against DR, wet AMD, and glaucoma. We thus 
propose that beyond its potential role as an initial trigger 
or cross-reactive target, EBNA-1 may also induce a state of 
immune tolerance or modulate dominant inflammatory 
pathways, thereby conferring a protective effect in these 
ocular disorders.

FIGURE 4 
Forest plot visualization of the negative causal effect of antibody-mediated immune responses on five eye diseases. DR, diabetic retinopathy; 
Wet AMD, Wet age-related macular degeneration; MR, Mendelian randomization; SNPs, single-nucleotide polymorphisms; OR, odds ratio, CI, 
confidence interval; *p- value <0.05; **p- value <0.00021.

FIGURE 5 
Causal effects of eye diseases on antibody-mediated immune responses in the reverse MR analysis. DR, diabetic retinopathy; MR, Mendelian 
randomization; SNPs, single-nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; *p- value <0.05; **p- value <0.00021.
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The protective function of EBV EBNA-1 
antibodies in DR, wet AMD, and glaucoma

EBV may exhibit differential impacts on ocular diseases 
depending on the stage of the viral life cycle. In our study, 
latent infection marked by EBNA-1 antibodies conferred 
protection against DR, wet AMD, and glaucoma, 
implicating a modulatory role in the chronic immune 
dysregulation common to these diseases. Chronic 
inflammation and immune dysregulation are fundamental 
pathogenic drivers common to these three conditions [36, 
37]. In DR and wet AMD, activated glial cells and 
macrophages secrete critical mediators including VEGF, 
TNF-α, IL-1β, and IL-6, which facilitate inflammation 
and angiogenesis [11, 38]. In glaucoma, T-cell infiltration 
and microglial activation play a role in the loss of RGCs, 
which is further aggravated by cytokines such as TNF-α, IL- 
6, and IL-8 [39, 40]. The protective role of EBNA-1 indicates 
its potential involvement in the modulation of 
inflammatory pathways.

Research indicates that EBNA-1 can suppress the 
canonical NF-κB pathway by inhibiting phosphorylation of 
IKKα/β [41]—a key signaling axis driving inflammation in 
diseases such as DR and AMD. By dampening NF-κB 
activation, EBNA-1 may reduce the expression of pro- 
inflammatory genes, albeit in a manner that also favors 
viral persistence and oncogenesis. Furthermore, latent 
EBNA-1 infection evades cytotoxic immune responses and 
may promote immune tolerance, possibly through the 
induction of regulatory T cells or specific antibody 
subtypes that mitigate auto-reactive immunity against 
ocular antigens [42]. This modulated immune environment 
may also restrain excessive macrophage and microglial 
activation in the retina and choroid [43], thereby limiting 
VEGF and pro-inflammatory cytokine production and 
potentially slowing disease progression.

Pathogenic mechanisms of JCV IgG+ in 
DR, wet AMD, and glaucoma

Conversely, our analysis supports a causal role for JCV 
IgG+ seropositivity in DR, age-AMD, and glaucoma. This 
ubiquitous virus, which persists asymptomatically in most 
adults, may reactivate under immunosuppression, enter 
circulation, and promote ocular neurovascular pathology 
[44, 45]. Critically, studies have confirmed that JCV can 
infect human cerebral vascular pericytes to breach the blood- 
brain barrier and subsequently invade astrocytes, causing 
neural damage [46]. As an extension of the central nervous 
system, the retina shares key developmental and structural 
features with the brain, and its blood-retinal barrier (BRB) 
relies on pericytes and Müller cells as essential components. 

Therefore, JCV may similarly target the BRB through 
comparable mechanisms, contributing to the vascular 
leakage pathology observed in DR and AMD.

Beyond direct viral invasion, virus-induced immune 
responses may constitute a key pathogenic mechanism. 
Murinello et al. [47] observed co-deposition of IgG, C1q, 
and membrane attack complexes in early AMD eyes, along 
with increased numbers of FcγRIIa- and FcγRIIb-expressing 
inflammatory cells in the choroid. Thus, JCV-specific 
antibodies may form local immune complexes in the 
retina, activating macrophages or microglia via Fcγ 
receptors and thereby driving chronic inflammation. 
Neurotropic viruses such as VZV and HSV-1 promote Aβ 
aggregation—a key component of AMD-associated 
drusen—through oxidative stress, calcium dysregulation, 
and impaired autophagy [48, 49]. As a neurotropic virus, 
JCV may similarly enhance AMD susceptibility via analogous 
Aβ-inducing pathways. In glaucoma, JCV could directly 
damage RGCs, supported by detections of JCPyV DNA 
and viral inclusions in intraocular fluid and RGCs [50]. 
These proposed mechanisms, however, await confirmation 
through larger clinicopathological studies.

The role of VZV gE and gI antibodies in the 
pathogenesis of scleritis and DR

Moreover, genetically predicted levels of VZV gE & gI 
antibodies showed positive causal associations with scleritis 
and DR. VZV, a double-stranded DNA virus, establishes 
latency in trigeminal ganglia after primary infection. Upon 
immunosuppression, reactivated virus can travel along axons 
to the eye, causing herpes zoster ophthalmicus, which clinically 
manifests as uveitis, scleritis, or retinal and optic nerve 
inflammation [18, 51].

VZV may increase susceptibility to DR and scleritis by 
targeting ocular vasculature. Studies demonstrate that VZV 
infects vessels via the ophthalmic branch of the trigeminal 
nerve, subsequently spreading trans-adventitially, disrupting 
the internal elastic lamina, and triggering intimal hyperplasia 
and a pro-inflammatory state [52].

Furthermore, the VZV glycoprotein gE acts as a key regulator 
of PINK1/Parkin-dependent mitophagy. By interacting with the 
autophagy protein LC3, gE induces substantial mitochondrial 
reactive oxygen species (mtROS) production [53]. Given that 
oxidative stress and mitochondrial dysfunction are central to DR 
pathogenesis, VZV likely exacerbates DR progression by 
modulating the PINK1/Parkin pathway.

Immune dysregulation further contributes to disease 
pathogenesis. VZV-induced mitophagy suppresses interferon 
production by inhibiting the STING and MAVS pathways, 
leading to elevated pro-inflammatory cytokines and 
NLRP3 inflammasome activation [53]. The release of these 
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mediators attacks the vascular sclera and compromises retinal 
vascular stability. Clinical evidence confirms VZV as a cause of 
scleritis, as demonstrated by the detection of viral DNA in 
aqueous humour. [16, 54]. The efficacy of 
immunosuppressants such as methotrexate in some scleritis 
patients further supports the role of VZV-driven immune 
dysregulation in disease progression.

Bidirectional causal relationship between 
DR and JCV infection

Reverse MR analysis indicates a genetically determined 
positive causal relationship between DR and JCV 
VP1 antibody levels. Critically, This finding indicates that 
genetic susceptibility to DR may predispose individuals to 
JCV reactivation by modifying the immune environment, 
rather than suggesting a direct, acute impact on antibody titers.

In diabetic patients, hyperglycemia/advanced glycation end 
products impair T-cell and B-cell function, leading to immune 
dysregulation [11]. The advancement of DR entails the 
disintegration of the BRB and the liberation of inflammatory 
mediators, including TNF-α. This state of chronic inflammation 
and immune dysregulation may create a favorable environment for 
the reactivation of JCV latent in peripheral organs, such as the 
kidneys. At the molecular level, studies indicate that NF-κB and 
C/EBPβ regulate JCV transcription through the κB motif within the 
viral genome, with both transcription factors being modulated by 
proinflammatory cytokines [55]. Furthermore, latent viruses in 
oligodendrocytes and astrocytes can be reactivated by 
inflammatory stimuli, enabling viral protein expression and 
subsequent replication [56]. Our findings suggest that JCV 
infection may worsen ocular pathology via mechanisms like BRB 
disruption and that the DR microenvironment may facilitate JCV 
reactivation. This bidirectional relationship, marked by mutual 
reinforcement, provides a more thorough and dynamic 
understanding of the intricate interaction between viral infection 
and ocular disorders.

Limitations

This study has several limitations. Its generalizability is 
constrained by the use of genomic data primarily from European 
ancestry, and importantly, the MR design itself captures the effect of 
lifelong genetic exposure to antibody levels, which differs from the 
impact of acute infection or transient serological changes. Moreover, 
despite thorough sensitivity analyses including Cochran’s Q, MR- 
Egger, and MR-PRESSO to account for pleiotropy and 
heterogeneity, residual confounding may still occur. The 
application of a strict Bonferroni correction may, to a certain 
degree, elevate the likelihood of Type II errors. Finally, the 

mechanistic insights regarding specific pathogens are still lacking 
and require additional experimental and clinical investigation.

Conclusion

This two-sample MR study establishes genetic evidence 
for the causal involvement of pathogen-specific immune 
responses in ocular disorders. We demonstrate that EBV 
reactivation may contribute to chronic iridocyclitis 
through molecular mimicry and B-cell dysregulation, while 
JCV appears to compromise the blood-retinal barrier (BRB) 
in DR and wet AMD, and increases glaucoma susceptibility 
via retinal ganglion cell injury. Reactivation of VZV likely 
exacerbates DR through mitochondrial ROS induction and 
promotes scleritis by impairing STING/MAVS pathway 
signaling. In contrast, EBNA-1 exhibits protective effects 
by suppressing NF-κB-mediated inflammation. 
Bidirectional MR analysis indicates that DR elevates JC 
VP1 antibody levels, thereby establishing a mutually 
reinforcing cycle of disease and viral reactivation.

Collectively, our findings provide the first genetic 
validation of causal relationships between multiple 
pathogen-specific immune responses and ocular diseases, 
revealing underlying mechanisms involving immune 
dysregulation, mitochondrial dysfunction, and 
inflammatory activation. These insights offer a foundation 
for developing targeted immunomodulatory and 
personalized therapeutic strategies in ophthalmology.
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