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Abstract

CD19-specific CAR T cells engineered to secrete a constitutively active form of
the pro-inflammatory cytokine, interleukin (IL)-18 have demonstrated
impressive efficacy in a recent clinical trial involving subjects who had failed
prior CART cell therapy. Corroborating these clinical data, preclinical studies of
IL-18-armored CAR and T cell receptor-engineered T cells have demonstrated
enhanced anti-tumor activity in several xenograft and syngeneic mouse cancer
models. Interleukin-18 improves tumor clearance via direct effects on CAR
T cells and indirect actions on cells on a variety of host immune cells, including
natural killer, macrophage and dendritic cells. Compared to unarmored CAR
T cells, IL-18-secreting CAR T cells are less exhausted, expand more efficiently
and produce greater quantities of interferon (IFN)-y. However, upregulated
circulating IL-18 and its downstream mediator, IFN-y, are also associated with
systemic toxicities which have proven to be severe on occasions. In light of this,
several groups have developed strategies that set out to restrict IL-18 release or
biological activity to the tumor microenvironment. Among these, CAR T cells
armored with NFAT-inducible IL-18 are now undergoing clinical testing. The
evaluation of inducible or tumor-selective IL-18 deployment will show whether
it is possible to minimize IL-18 related systemic toxicities while preserving
localized amplification of anti-tumor activity.
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Impact statement

Although successful in the treatment of specific blood cancers, CAR T cell therapy has
shown limited efficacy against solid tumors. A key barrier in this regard is the highly
immunosuppressive nature of the solid tumor microenvironment (TME). One proposed
means to address this entails the co-engineering of CAR T cells to produce interleukin
(IL)-18, an approach that is currently being investigated in clinical trials. This minireview
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provides an overview of published clinical and preclinical studies
of IL-18 armoring. We conclude that IL-18 consistently improves
the anti-tumor efficacy of CAR T cells, but may elicit toxicities
that arise from its pro-inflammatory properties. We also describe
a number of strategies that set out to harness this cytokine in a
more tumor-targeted and ultimately safer manner.

Introduction

(CARs)
transmembrane proteins that redirect the MHC-independent

Chimeric antigen receptors are  synthetic

activation of immune effector cells (notably T cells) when
[1]. As of
and Drug

they encounter native cell surface antigens
2025, the United States Food
Administration had approved seven autologous CAR T cell

December

therapies targeting either CD19 in B-cell malignancies or
B cell maturation antigen in multiple myeloma [2-4]. Recent
years have seen an increase in global efforts to extend CAR T cell
therapy to solid tumors, with over 300 registered clinical trials
collectively ~ targeting 46  distinct  solid  tumor-
associated antigens [5].

To achieve clinical efficacy, particularly against solid cancers,
CAR T cells need to avoid attenuation by immunosuppressive
cells residing in the tumor microenvironment (TME) [6].
Regulatory T cells (Tregs), myeloid-derived suppressor cells
(MDSCs) and M2 polarized macrophages can all inhibit
T cells
immunosuppressive factors, such as transforming growth
factor-beta (TGF-P) and interleukin (IL-)10 [7].

Fourth generation CAR T cells, also known as armored CARs
or TRUCKS (T cells Redirected for Universal Cytokine Killing),

are designed to counteract the immunosuppressive TME by

through inhibitory immune checkpoints or

secreting pro-inflammatory cytokines [8, 9]. Commonly used
examples include IL-7, IL-12, IL-15 or IL-18 [10-13]. In this
minireview, we focus specifically on IL-18 and on strategies to
maximize the therapeutic index of this approach.

Historically, IL-18 was known as interferon (IFN)-y inducing
factor owing to its ability to enhance IFN-y secretion by CD4*
T cells, CD8" T cells and Natural Killer (NK) cells [14-16].
Interleukin 18 is produced mainly by macrophages and dendritic
cells (DCs) and is released as an inert precursor known as pro-IL-
18. Canonical activation of pro-IL-18 is mediated by caspase-1
cleavage in the inflammasome, after which biologically active IL-
18 is secreted through Gasdermin-D plasma membrane pores
[17-19]. Upon release, IL-18 either binds to IL-18 receptor (IL-
18R)a on the surface of T cells and NK cells or is neutralized by a
soluble decoy receptor, IL-18 binding-protein (IL-18BP) [20, 21].
The interaction between IL-18Ra and IL-18 is stabilized by the
accessory receptor IL-18Rp, which facilitates activation of the
transcription factor, NF-kB through the adaptor proteins, TRAM
(TRIF-related adaptor
differentiation primary response protein 88) [22, 23].

molecule) and MyD88 (myeloid
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Interleukin 18 exerts pleiotropic proinflammatory actions
that include NK cell activation, DC maturation and context-
dependent activation of either Thl or Th2 responses [24-26].
The anti-tumor effects of IL-18 alone or in combination with IL-
12 were reported in mouse models as early as 1998 [27-29].
Subsequent clinical trials of recombinant human IL-18
confirmed that it had a reasonable safety profile (albeit linked
to some grade 3 and one grade 4 adverse reactions) [30, 31].
[30, 31],
prompting research into IL-18-based combination therapies

However, anti-tumor efficacy was insufficient

including CAR T cell approaches.

IL-18 armoring improves anti-tumor
activity of engineered T cells in pre-
clinical models

Armoring/supplementation of either CAR- and T cell
receptor (TCR)-engineered T cells with IL-18 has been
evaluated in several independent preclinical studies,
employing both xenograft and syngeneic mouse models
(Table 1). In all but two cases, IL-18 armoring was achieved
by stable viral transduction. By contrast, Huang et al. [40]
administered mature IL-18 protein by intraperitoneal
injection, while Olivera et al. [43] transiently electroporated
T cells with IL-18 mRNA, IL-12 mRNA, or both. In 13 of
these studies, IL-18 was shown to boost anti-tumor efficacy.
Exemplifying this, Chmielewski et al. [37] and Ng et al. [36]
both showed that IL-18 facilitated CAR-mediated tumor
clearance in the setting of low target antigen expression.
Efficacy was further improved by fusing biologically active IL-
18 to a leader peptide to direct release of constitutively active IL-
18 via the secretory pathway [33]. Additionally, decoy-resistant
versions of IL-18 have been generated by mutagenesis, obviating
the antagonistic effects of IL-18BP this
cytokine [43, 47].

In contrast, two studies reported that IL-18 armoring alone

natural on

was not sufficient to boost CAR T cell anti-tumor activity. Ma
et al. found that IL-18-armored anti-GD2 CAR T did not prolong
the survival of mice engrafted with a CHLA-255 human
neuroblastoma xenograft, instead inducing toxicity manifested
as weight loss [41]. Such toxicity was also reported by Fisher-
Riepe et al. in a similar model [39]. Additionally, Olivera et al.
found that Pmel-1 TCR transgenic T cells and anti gp75 CAR
T-cells achieved improved tumor control only if engineered to
transiently co-express IL-12 and IL-18 mRNA, but not IL-18
alone [43]. This finding is in line with an earlier report that IL-12
upregulates IL-18Rp and thus synergizes with IL-18 in inducing
[48]. Contrasting with this however,
Chmielewski et al. found that the combination of IL-12 and
IL-18 did not improve anti-tumor activity beyond that observed
with IL-18 alone, highlighting the importance of context in the

IFN-y expression

biological actions of these cytokines [37]. The combination of IL-
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TABLE 1 Pre-clinical studies of IL-18-armored CAR and TCR-engineered T cells.

References

IL-18 format

Cell therapy

In Vivo cancer
models

Mechanisms of action

10.3389/ebm.2026.10938

Hu et al. [32]

Avanzi et al. [33]

Drakes et al. [34]

Jaspers et al. [35]

Ng et al. [36]

Chmielewski
et al. [37]

Kunert et al. [38]

Mouse and human
Mostly constitutively
active IL-18 but one
experiment with NFAT-
based inducible system

Mouse and human.
Constitutively active IL-
18. IL-2 leader peptide for
improved secretion

Mouse or human.
Constitutively active IL-18

Mouse
Constitutively active IL-18

Human IL-18
Constitutively active
Expressed in a separate
vector

Mouse and human IL-18
Expressed under the
control of NFAT/

IL2 minimal promoter
In a separate vector

to CAR.

Mouse IL-18
Expressed under the
control of NFAT/

IL2 minimal promoter
In a separate vector
to CAR.

Experimental Biology and Medicine

Human anti-mesothelin
CAR T cells (4-1BB)

Human anti-CD19 CAR
T cells (4-1BB)

Mouse anti-CD19 CAR
T cells (4-1BB)

Human anti-CD19 CAR
T cells (CD28)

Mouse anti-CD19 CAR
T cells (CD28)

AsPCl1 human pancreatic
cancer in NSG mice

Nalmé human pre-B
leukemia in NSG mice

B16F10 mouse melanoma
(CD19") in C57BL/6 mice

Nalm6 human pre-B
leukemia in SCID/Beige

mice

EL4 mouse thymoma
(human CD19") in C57BL/
6 mice

Mouse anti-MUCl6ecto
CAR T cells (4-1BB,
CD28)

Mouse Pmel-1 T cells
(CD8" T cells from
transgenic mice
expressing TCR specific
for gp100 peptide)

Human NY-ESO-1 TCR-
engineered T cells

Mouse anti-DLL3 CAR
T cells (4-1BB)

Human anti-DLL3 CAR
T cells (CD28 or 4-1BB)

Human anti BCMA/TACI
and anti-BAFF receptor
dual CAR T cells (CD28,
4-1BB or both)

Mouse anti-CEA CAR
T cells (CD28)

ID8 mouse ovarian
carcinoma (human
MUCl16ecto*) in C57BL/
6 mice

B16F10 mouse melanoma
in C57BL/6 mice

A375 human melanoma in
NSG mice

Mouse small cell lung
cancer in C57BL/6 mice

H82, H69 and SHP-77
human small cell lung
cancer in NSG mice

MOPC315.BM mouse
plasmacytoma in BALB/c

mice

Panc02 mouse pancreatic
carcinoma (CEA+) in
C57BL/6 mice

Human anti-CEA CAR
T cells (CD28)

Mouse gp100/HLA-A2-
specific TCR-engineered
T cells

A549 human lung cancer
(CEA+) in Rag2—/— yc—/—
mice

B16BL6 mouse melanoma

(gp100*) in C57BL6/HLA-
A2 mice

03

IL18R-dependent proliferation
of CD4" T cells induces CD8"
T cell expansion

Autocrine activation of CAR
T cells

Activation of endogenous
immune system with epitope
spreading

Re-polarization of
macrophages

DC activation and maturation
and CD8" T cell expansion

Autocrine activation of CAR
T cells

CD8" T cell expansion
Reduced T cell exhaustion
Fewer M2 macrophages Fewer
MDSCs

DC activation

CD8" T cell expansion
Less T cell exhaustion
macrophage re-polarisation
DC activation

Activation of host effector cells
rather than direct T cell
cytotoxicity

Increased M1 macrophages
Increased DCs

CD8" T cells increase in
effector phenotype (T-bet",
FoxO1'¥)

Fewer immunosuppressive
DCs, Tregs and

M2 macrophages in the TME
More NKG2D* NK cells

Enrichment of CD8" T-cells in
the TME

No difference in myeloid
populations

Elevated serum IFN-y,
TNF-a, and IL-18. One
C57BL/6 mouse died
(potentially due to IL-18
toxicity)

Elevated serum IL-6,
TNF-a, IFN-y and IL-18,
but no safety concerns
raised

Elevated serum IL-6,
TNF-a, IFN-y and IL-18,
but no safety concerns
raised

Elevated serum IL-18
and IFN-y, TNF-a
Serum IL6 not elevated

40% of mice treated with
IL-18 armored 3rd
generation CAR T-cells
died

Associated with elevated
serum IL-6, GM-CSF,
IL-10, IL-27, IFN-y and
IL-18

FElevated serum IL-6, IL-
27, and IL-18, but no
change in IFN-y, IL-2,
GM-CSF or TNF-a

Elevated serum IL-18,
but not IFN-y, IL-2, IL-
10, TNF-a or IL-18
Combination with IL-12
was toxic

(Continued on following page)
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TABLE 1 (Continued) Pre-clinical studies of IL-18-armored CAR and TCR-engineered T cells.

References

IL-18 format

Cell therapy

In Vivo cancer
models

Mechanisms of action

10.3389/ebm.2026.10938

Fisher-Riepe
et al. [39]

Human IL-18
Expressed under the
control of NFATsyn
synthetic promoter and
co-expressed with CAR
using a single lentiviral
vector

Human anti-GD2 CAR
T cells (4-1BB)

CHLA-255 human
neuroblastoma cells in NSG
mice

CD8" T cell expansion

CART cell-induced graft
versus host disease was
exacerbated by IL-18

Huang et al. [40]

Recombinant human or
mouse IL-18
intraperitoneal injections
(2 ug every 3 days)

Mouse anti-HER2 CAR
T cells (4-1BB)

Mouse OT-1 T cells
(CD8" murine T cells
expressing ovalbumin-
specific TCR)

B16F10 (HER2") mouse
melanoma in C57BL/6 mice

G7-OVA mouse lymphoma
in C57BL/6 mice

Human anti-HER2 CAR
T cells (4-1BB)

SKOV3 human ovarian
cancer and MCF-7 human
breast cancer in NOD SCID
mice

In vitro IL-18-armored CAR
T cells co-cultured with tumor
cells downregulated pro-
apoptotic genes and PD-1 and
upregulated CCR12,

CXC10 and IFN-y

In vivo, increased proportion
of central memory T cells

No indication of toxicity
Serum cytokines not
measured

Ma et al. [41]

Human or mouse IL-18
cDNA incorporated into a
separate vector from CAR.

Human anti-GD2 CAR
T cells (CD-28)

CHLA-255 human
neuroblastoma cells in NSG
mice

Mouse OT-1 T cells
(CD8" murine T cells
expressing ovalbumin-
specific TCR)

B16-OVA mouse
melanoma in C57BL/6 mice

The focus of this study was IL-
23 armoring

IL-18 armoring induced
weight loss in CHLA-255
mouse model

Breman et al. [42]

Human IL-18
Constitutively active

NKG2D CAR T cells
(NKG2D fused to CD3-()

THP-1 human monocytic
leukemia

Toxicity was observed
and was abrogated using
IL18-BP.

Olivera et al. [43]

Ruixin et al. [44]

Hull et al. [45]

Mouse 18BP-resistant IL-
18 in combination with
mouse IL-12 mRNA
transiently introduced as
mRNA via electroporation

Mouse IL-18
Constitutively active

Mouse and human;
Granzyme B cleavable
IL-18

Mouse Pmel-1 T Cells
(CD8" T cells from
transgenic mice
expressing TCR specific
for gp100 peptide)

Mouse OT-1 T cells
(CD8" murine T cells
expressing ovalbumin-
specific TCR)

Mouse anti-gp75 CAR
T cells (4-1BB)

Mouse anti-EGFRVIIL
CAR T cells (CD28) with
or without CXCR2

Human parallel CAR

T cells (anti-

MUCI CD28-containing
CAR with T1E-targeted 4-
1BB co-stimulatory
receptor)

B16-OVA mouse
melanoma in both flanks of
C57BL/6 mice

4T1 mouse mammary
carcinoma in BALB/C mice

EO771 mouse mammary
carcinoma in C57BL/6 mice

MDA-MB-468 human
triple negative breast cancer
in SCID Beige mice

Mouse panErbB-specific
CAR T cells (CD28)

B7E3 mouse head and neck
squamous cell carcinoma in
BALB/c mice

The combination of IL-18 and
IL-12 armoring increased
expression of 2 O-glycans on
T cells associated with
advanced E-selectin adhesion
and abscopal activity in non-
injected tumors contralateral
to injected tumors

T cells also upregulated miR-
155 which enhanced glucose
metabolism and respiration

Reduced CAR T cell
exhaustion

Enhanced M1 macrophage
polarization and increased DC
frequency

No indication of toxicity

Elevated serum IL-6,
IFN-y, IL-10, IL-4 and
TNF-a

Safety improved in
combination with
CXCR2 (e.g., less
elevation of IL-6 and
1L-4)

Lethal toxicity in
syngeneic models if IL-
18 was constitutively
active, but not seen with
granzyme B format
Toxicity was associated
with elevated serum IL-
6, MCP-1, GM-CSF,
IFN-y
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TABLE 1 (Continued) Pre-clinical studies of IL-18-armored CAR and TCR-engineered T cells.

References IL-18 format Cell therapy In Vivo cancer Mechanisms of action
models
Justicia-Lirio Human IL-18 Human anti-CD19 CAR | Namalwa (human Burkitt Proportion of T cells with Only xenograft models
et al. [46] Doxycycline-inducible T cells (4-1BB) lymphoma model) in NSG = memory phenotype increased | so not much assessment
mice of improved safety but it

is the rationale
MIA-PaCa2 (CD19%)
human pancreatic
adenocarcinoma in NSG
mice

All studies demonstrated improved anti-tumor activity linked to IL-18 armoring in at least one cancer model. Abbreviations: BAFF, B cell activating factor; CEA, carcinoembryonic
antigen; CXCR2, CXC receptor 2; DLL3, delta-like ligand 3; EGFRVIII - VIII splice variant of epidermal growth factor receptor; GM-CSF, granulocyte macrophage colony-stimulating
factor; IFN-y, interferon y; IL, interleukin; ILI8R, interleukin 18 receptor; pmel, premelanosome protein; MCP1, monocyte chemoattractant protein 1; TACI, transmembrane activator and
CAML interactor; TNF-a, tumor necrosis factor o; T1E - panErbB ligand, generated as a fusion protein derived from transforming growth factor a and epidermal growth factor.

12 and IL-18 has also proven to be highly toxic in Although IL-18 drives T cell activation and
some studies [38]. differentiation, it has also been shown to decrease
exhaustion [33, 35, 44], manifested also as a reduction in
PD-1, TIM-3 and LAG-3 triple positive T cells [34].

IL-18 has several mechanisms of anti- Metabolic impact of IL-18 armoring was shown most
tumor action convincingly in CAR-expressing y§ T cells, indicated by
increased  mitochondrial ~ mass  accompanied by
The aforementioned pre-clinical studies have provided useful upregulation of both the glucose transporter, GLUTI and
insights into mechanisms by which IL-18 can enhance tumor amino acid transporter, CD98 [45].
control. A key effect is autocrine stimulation via binding to T cell- Importantly, effects of IL-18 armoring are not limited to
associated IL-18R, amplifying the production of IFN-y. In autocrine actions. Avanzi et al. found that IL-18 secreted by
keeping with this, engineering of CAR T cells to produce CAR T cells also improved the anti-cancer activity of
membrane-bound IL-18 allowed engagement of IL-18R in cis endogenous host T cells. Thus, IL-18-armored anti-CD19
and enhanced in vitro anti-tumor activity [49]. Single cell RNA CAR T cells increased the survival of mice engrafted with a
sequencing analysis revealed that IL-18 armoring was linked to mixture of CD19* and CD19™¢ EL4 tumors. Splenocytes
enhanced NF-kB signaling and gene expression associated with isolated from these mice that lacked CAR expression had an
the cell cycle, T cell activation, interferon stimulation and increased cytolytic and IFN-y producing capacity when co-
antigen-presentation [36]. Further confirming the importance cultured with CD19"*¢ tumors, unlike control splenocytes
of autocrine stimulation, genetic knock out of IL-18R in IL-18 from mice treated with non-armored CAR T cells [33].
producing CAR or TCR-engineered T cells decreased efficacy in Nonetheless, when tested in the pmel-1 TCR transgenic
several models [32-34]. model, impact on anti-tumor efficacy was less prominent if

By binding IL-18R in cis, IL-18-armoring supports the IL-18R expression was abrogated in host (rather than CAR T)
proliferation of CD4" CAR T cells, which, in turn, enabled the cells only [34].

expansion of CD8" CAR T cells [32]. Indeed, expansion of CD8" Interleukin 18 also has multiple effects on the myeloid
T cells, both adoptively transferred and of host origin, has been a compartment, albeit variable across different models. Several
widely reported action of IL-18 by several groups [32-35, 38, 39]. studies have reported macrophage re-polarization from an

Within the CD8" T cell compartment, IL-18 has been reported to anti-inflammatory M2 (CD206/MHC-II) to a pro-
promote a CCR7" effector memory and T-bet" FoxO1" terminal inflammatory M1 (MHCII*) phenotype [33-37, 45].

effector phenotype [32, 37]. In agreement, a recent clinical Additionally, the frequency of splenic and intra-tumoral DCs
showed that most IL-18 armoring of anti-CD327 CAR T cells were increased, accompanied by a more mature and activated
resulted in an amplification of CD8" effector T cells [50]. phenotype (CD11¢"MHC-IT") [33-36]. Armoring with IL-18 has
Additionally, RNAseq data indicate that IL-18 armoring also been shown to reduce immunosuppressive intratumoral
downregulates naive T cell markers (CD27, CD127, CD62L) M2 macrophages alone [37], or in addition to both monocytic
[36]. However, three other preclinical studies showed that IL-18 (CD11b*, Ly6C") and granulocytic (CD11b*, Ly6G") MDSCs
instead promoted the CD8* CCR7* CD62L" central memory [34]. Notably however, Kunert et al. found little impact of IL-18
phenotype [33, 35, 46]. These discrepancies may be context- on tumor-infiltrating myeloid cell numbers [38] while Jaspers
dependent, relating for example, to the specific CAR T cell and et al. found that IL-18 upregulated PD-L1 on F4/80*
tumor model under study. macrophages and DCs [35], an undesirable effect linked to
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IFN-y production [51]. In line with this, combination therapy
with IL-18-armored CAR T cells and a PD-L1 blocking antibody
led to improved anti-tumor activity [35].

In addition to the autocrine and paracrine mechanisms
described above, Huang et al. presented evidence that IL-18
may also act via an IL-18R independent mechanism [40].
Accordingly, when IL-18Ra was knocked out in both
the host and the infused CAR T cells, recombinant IL-18
could still improve anti-tumor activity. Since IL-18Rp
cannot bind IL-18 with meaningful affinity alone, authors
speculated that an additional unknown receptor may also
be operative.

Finally, it should be noted that in some circumstances,
IL-18 linked with
undesirable tumor-promoting effects [52-54]. However,
this the
inflammation driven by this cytokine, contrasting with its

dysregulated activity has been

may reflect actions of chronic low-level
effects when released acutely and at high-level by an IL-18

armored T cell.

Toxicity associated with IL-18

Armoring with IL-18 is generally considered to be safer than
with IL-12. Mlustrating this, Drakes et al., showed that IL-12- but
not IL-18-armored T cells caused fatal toxicity in sublethally
irradiated mice [34]. Moreover, IL-12 has proven highly toxic in
man when administered as a cytokine or in the context of
armored TIL cells (Qi and Maher, manuscript under review),
in contrast to the more modest side effects of IL-18
therapy [30, 31].

Nonetheless, there are a number of indicators to suggest
that excessive IL-18 activity could also impose the risk of
increased toxicity. First, several pre-clinical studies have
demonstrated the ability of IL-18-armored T cells to
induce severe and sometimes lethal toxicity [32, 36, 45].
Moreover, clinical evidence supports the important pro-
inflammatory role of IL-18. Chronically elevated serum IL-
18 is associated with pro-inflammatory diseases, such
as hemophagocytic lymphohistiocytosis/macrophage
activation syndrome (HLH/MAS) [55, 56]. These “IL-
also characterised by CD8" T «cell
[16, 57].
Driorio et al. found that patients experiencing CD19 CAR

18opathies” are

expansion and macrophage hyperactivation

T cell-induced severe cytokine release syndrome (CRS) had a
similar serum proteomic signature to that of HLH patients
[58]. Evidence has also been presented that IFN-y signaling
promotes CRS [59]. Moreover, IL-18 has emerged as a
biomarker associated with immune effector cell-associated
neurotoxicity syndrome (ICANS) [58]. Consequently, by
raising serum IFN-y levels, it is logical that IL-18
armoring could potentially contribute increase risk and

severity of both CRS and ICANS.
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Clinical experience with IL-18
armored T cells

Recently, the first clinical trial of IL-18-armored CD19 CAR
T cells was reported in patients with B cell lymphoma
(NCT04684563) [13]. Although 20 of 21 subjects had failed
prior CAR T cell therapy, 11 achieved complete remission of
disease by 3 months with a further 6 partial responses noted,
giving a median duration of response of 9.6 months at median
follow up of 17.5 months. Responses appeared to be more
frequent if prior CAR T cell therapy had been with a CD28-
rather than 4-1BB-containing product. These impressive data
may also have been contributed to by the use of a shortened
(3 days) manufacturing process, known to enhance T cell fitness.
Authors presented evidence that active IL-18 was buffered
effectively by IL-18BP in treated patients, mitigating risk of
excessive toxicity. Cytokine release syndrome occurred in
13 subjects of which 3 reached grade 3 (correlated with higher
CAR T-cell expansion), while neurotoxicity occurred in
3 patients (all grade 1-2) and there were no cases of
hemophagocytic syndrome. While this would generally be
considered an acceptable safety profile, it should be noted
that subject
corticosteroid-refractory CRS and was ultimately treated with

however one developed  tocilizumab/
IL-18 binding protein. Elsewhere it is reported that one (perhaps
the same) subject developed transient pulmonary edema in the
context of grade 3 CRS, which was deemed a dose-limiting
toxicity (DLT) that required expansion of the 3 x 107 cell
dose level to 6 subjects.

In a second clinical trial, 5 acute myeloid leukemia patients
were treated with IL-18-armored anti-CD371 CAR T cells
(NCT06017258) [50]. Three achieved minimal residual disease
negative disease status, also confirming the therapeutic activity of
this experimental approach. All 5 treated patients developed
CRS. Onset of symptoms correlated with a peak in serum IL-
18 and IFN-y levels, as well as NK cell expansion and activation
suggesting that biologically active IL-18 was present. Both
patients who received the highest planned dose of 3 x 10°
cells/kg experienced DLTs, namely, prolonged cytopenias and
grade 4 CRS respectively. The latter DLT was resistant to two
doses of tocilizumab and ultimately was successfully treated with
the IFN-y-blocking antibody, emapalumab. In short, these
clinical data provide strong clinical support for the ability of
IL-18 CAR armoring to boost efficacy, but highlight the fact that
this approach may accentuate the risk of inflammatory toxicity in

some cases.

Strategies to mitigate IL-18
mediated toxicity

Given the aforementioned considerations, efforts have been
made to restrict the functional impact of IL-18 armoring systems
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TABLE 2 Ongoing clinical trials of IL-18-armored CAR T cells. Search conducted on https://clinicaltrials.gov, and https://euclinicaltrials.eu, both

accessed 17th December 2025.

Trial identificator Sponsor Name Status

NCT04684563 [13] University of Pennsylvania Phase I trial of huCART19-IL18 cells in patients with relapsed or refractory CD19* Active, not

cancers recruiting

NCT05989204 University of Pennsylvania TmCD19-IL18 in CD19" cancers Recruiting

NCT06017258 [50] Memorial Sloan Kettering A study of CD371-YSNVZIL-18 CAR T cells in people with acute myeloid leukemia Recruiting
Cancer Center

NCT06287528 Memorial Sloan Kettering A study of 19-282/IL-18 in People with acute Lymphoblastic Leukemia (ALL) Recruiting
Cancer Center

NCT05783570 Eutilex To evaluate the safety, tolerability and preliminary efficacy of EU307 Recruiting

EU CT Muenster University A phase I safety, dose finding and feasibility trial of GD2IL18CART in patients with Recruiting

2022- 501725-21-00 relapsed or refractory GD2 positive solid cancers

to the TME. Conceptually, this is particularly appropriate for
solid tumors given their propensity to originate from and
metastasize to parenchymal organs - meaning that effective
technologies would minimize unwanted IL-18 activity in the
circulation. One commonly used system entails placing the IL-18
cDNA under the transcriptional control of a Nuclear Factor of
Activated T cells (NFAT)-based promoter. Since NFAT
upregulation is coupled to activation of CAR by its target
antigen, IL-18 is preferentially produced in the TME [60, 61].
Chmielewski et al. demonstrated the safety and efficacy of T cells
armored with IL-18 under the control of NFAT/IL2 minimal
promoter [37]. Using this dual vector approach, they observed no
toxicity and no increase in serum IFN-y. However, serum levels
of IL-18, IL-6 and IL-27 were elevated indicating that this system
may not have been completely stringent. In keeping with this,
NFAT-regulated IL12 constructs proved lethal in mice [62] and
also caused toxicity in clinical trials [63], likely due to non-
specific upregulation of NFAT by signals not related to binding of
target antigen. Providing reassurance, the same system was used
to express IL-18 in TCR-engineered T cells without evident
toxicity or detectable levels of circulating IFN-y or tumor
necrosis factor (TNF) a [38]. This suggests that a degree of
leakiness of the system may be tolerable for IL-18 armoring in
light of the lower toxicity seen with this cytokine compared to IL-
12. More recently, a similar NFAT plus synthetic TATA box
regulated IL-18 expression system has been incorporated into a
single lentiviral vector system together with a GD2 specific CAR
[39]. When tested in preclinical xenograft model of GD2-
expressing malignancy, superior anti-tumor efficacy was once
again demonstrated. This system has now been advanced to early
phase clinical testing in patients with GD2-expressing
malignancies (EU CT 2022- 501725-21-00). Finally, Hu et al.
have also independently described an NFAT-regulated IL-18
armoring technology as a device to improve the safety of this
approach [32].

As an alternative approach, Justicia-Lirio et al. developed a
doxycycline-inducible IL-18 technology [46]. Anti-CD19 CAR
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T cells armored with this system showed excellent safety and
efficacy in xenograft mouse models. This strategy was also used
to improve safety of IL-12 armoring, providing a testament to its
stringency [62].

A distinct strategy to restrict IL-18 activity to the TME was
developed by Hull et al. [45] Since T cells lack caspase 1 activity,
the caspase 1 proteolytic cleavage site in pro-IL18 was modified
to one favored by granzyme B (GzB-IL18). The resulting GzB-
IL18 propeptide is constitutively released in an inactive state by
the armored CAR T cells. However, it selectively acquires
biological activity when CAR T cell degranulation occurs,
owing to co-localization with released granzyme B. In a
syngeneic mouse model of head and neck squamous cell
carcinoma, mice treated with Gzb-IL18-armored panErbB-
specific CAR T cells had an execllent safety profile and
improved survival due to enhanced tumor control. In
contrast, armoring of panErbB CAR T cells with constitutively
active IL-18 was lethal in this model. Toxicity was associated with
increased serum levels of several cytokines, including IFN-y.

Discussion

IL-18 armoring improves the efficacy of CAR and TCR-
engineered T cell therapies, as shown in numerous pre-clinical
studies. Moreover, recent clinical experience supports the utility
of this approach in hematological malignancies. However, these
studies also suggest the potential for uncontrolled IL-18 activity
to aggravate CAR T cell-mediated toxicities such as CRS and
ICAN:S, especially if coupled to a CAR that already has significant
toxic potential. This provides a strong rationale for the use of
engineering strategies that can improve safety of IL-18 armoring,
while preserving or even improving its efficacy. Three such
strategies have been discussed here, namely,, NFAT- or
doxycycline-controlled IL-18 transcription or modification of
the cleavage site within pro-IL-18 to one favored by granzyme B.
The first of these technologies, NFAT-inducible IL-18, is already
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undergoing clinical evaluation. Interleukin 18-armored CAR T cells
are currently being tested in a small number of clinical trials
(Table 2). Ultimately, only the results of these and additional
studies will convincingly show whether IL-18 significantly
contributes to anti-tumor efficacy without causing toxicities
beyond tolerable limit. In the meantime, additional pre-clinical
studies will provide further insights into the various mechanisms by
which secreted IL-18 boosts the anti-tumor activity of both
engineered T cells and the endogenous immune system.
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