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Experimental Biology and
medicine conference thematic
issue introduction

Warren Zimmer*

Medical Physiology, College of Medicine, Texas A&M University Health Science Center, College
Station, TX, United States
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Editorial on the Research Topic Experimental

Biology and medicine conference thematic issue introduction

The Society for Experimental Biology and Medicine (SEBM) sponsored a scientific

meeting called Experimental Biology and Medicine Conference (EBMC 2024) on

13–16 October 2024. This was a transition for the Society from being a part of the

larger Experimental Biology meeting to a meeting completely organized by SEBM and was

the inaugural national meeting for the society. A committee of resolute members planned

for over 2 years to have an in personmeeting in Orlando, Florida.While planning touched

on almost all contingencies, the track of Hurricane Milton through central Florida and

Orlando necessitated a change of plans. In a tour de force SEBM changed the meeting

format to online in just under 48 h to avoid any weather-related issues.

Even though EBMC moved to an online format, SEBM, a premier supporter of basic

biomedical interdisciplinary research, maintained true to its mission of the dissemination

of innovative translational research engaging basic and clinical scientists as well as

promoting the career development of trainees and early career scientists. Over

50 scientists presented their cutting-edge research at EBMC and the Society, in

collaboration with the Alliance for Cell Therapy, held a tribute to Dr. Arnold (Arnie)

Caplan, the discoverer of Mesenchymal Stem Cells (MSCs) and largely regarded as the

“father” of modern stem cell research therapies.

With input from SEBMmembership, it was decided to have 3 themes for the meeting

which were: Disorders of the Nervous System, Cardiovascular Disease and Regenerative

Medicine: Stem Cell Based Therapies. Each theme was chosen to be an umbrella which

sessions had content from basic science to clinical science. Each speaker was given the

opportunity to submit a manuscript to the Journal (EMB) that summarized their work.

The program committee chose the following papers to highlight in a special issue of the

journal, termed Experimental Biology and Medicine Conference Thematic Issue, that

represents at least one study from each area of interest from EBMC 2024.

Cardiovascular Diseases (CVDs) are a collection of disorders of the heart and blood

vessels and remain a leading cause of death worldwide. One major issue is the inability of
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heart cells to be repaired after injury. This has led to many studies

of stem cell therapies for heart repair, however there is limited

positive outcomes from this approach. The studies described by

[1] show that there is significant reprogramming of heart cells

(cardiomyocytes) in situ through limited injection of synthetic

mRNAs encoding two important developmental factors called

STEMIN and YAPS5A. Short term expressions of these factors

lead to a reprogramming and subsequent repairing of the once

senescent cardiomyocyte. This approach represents a major leap

forward in potential therapies of cardiac injuries such as

myocardial infarction and heart failure.

A second principal CVD issue involves changes in vessels

carrying blood from the heart to the periphery, largely referred to

as Atherosclerosis. These changes are responsible for a range of

cardiovascular and cerebrovascular diseases, such as heart attack,

heart failure, and stroke and are a major contributor to the global

burden of cardiovascular disease. The studies reported here

by [2] describe the capability of reversing many of the

debilitating changes of atherosclerotic disease through

restoring copper homeostasis in the system. Thus, it is

possible that new, improved therapies for reversing

atherosclerosis can be had by simply repairing metal

physiology to the affected cells and tissues.

Like cardiomyocytes, neural cells are particularly

intransigent to regeneration and repair. This is especially

important in treatment of issues such as spinal cord injury

(SCI). As discussed in the review by [3] there have been huge

discoveries in treating SCI. However, there remains barriers in

developing therapies for such injuries. As discussed in their

review there is great hope with the continued progress in the

field aimed at enhancing quality of life and functional outcomes

for patients with debilitating spinal cord injuries.

As mentioned above, EBM dedicated a session to a tribute for

Dr. Arnie Caplan, the recognized founder of stem cell therapies.

A theme of the Regenerative Medicine talks centered around the

ability to generate stem cells sufficiently from patients to be used

in attacking a specific disease or injurious issue. This is a major

problem and leads to treating patients with non-autologous cells

leading to important issues of rejection of the added cells by the

hosts, sometimes leading to greater complications than the initial

lesions. The studies reported here by [4] at the University of

Tennessee Health Science Center shows that induced

mesenchymal stem cells (MSCs) can be isolated from

periodontal ligament tissues in numbers that allow for

regenerative medicine treatments. Thus, these authors indicate

that we may be on the threshold of designing therapies using cells

from the patients themselves. Clearly a breakthrough in the

ability of treating many diseases and improving world health.

The papers presented here in the Experimental Biology and

Medicine Conference Thematic Issue represent a small sample of

the cutting-edge research presented at EBM 2024. Although we

did switch to a virtual format, the presentations provoked much

discussion and have led to enhanced collaborations among

scientists that might not have come together except for

listening and participating in the diverse talks.

Respectfully,

Warren Zimmer, PhD, SEBM Past President
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STEMIN and YAP5SA, the future
of heart repair?

Nada Bejar1, Siyu Xiao1, Dinakar Iyer1,2, Azeez Muili1,
Adeniyi Adeleye1, Bradley K. McConnell2 and
Robert J. Schwartz1*
1Department of Biology and Biochemistry, University of Houston, Houston, TX, United States,
2Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of
Houston, Houston, TX, United States

Abstract

This review outlines some of themany approaches taken over a decade ormore

to repair damaged hearts. We showcase the recent breakthroughs in organ

regeneration elicited by reprogramming factors OCT3/4, SOX2, KLF4, and

C-MYC (OKSM). Transient OKSM transgene expression rejuvenated

senescent organs in mice. OKSM transgenes also caused murine heart cell

regeneration. A triplet alanine mutation of the N-terminus of Serum Response

Factor’s MADS box SRF153(A3), termed STEMIN, and the YAP mutant, YAP5SA

synergized and activatedOKSM andNANOG in adult rat cardiacmyocytes; thus,

causing rapid nuclear proliferation and blocked myocyte differentiation. In

addition, ATAC seq showed induced expression of growth factor genes

FGFs, BMPs, Notchs, IGFs, JAK, STATs and non-canonical Wnts. Injected

STEMIN and YAP5SA synthetic modifying mRNA (mmRNA) into infarcted

adult mouse hearts, brought damaged hearts back to near normal

contractility without severe fibrosis. Thus, STEMIN and YAP5SA mmRNA may

exert additional regenerative potential than OKSM alone for treating heart

diseases.

KEYWORDS

stem cell factors, OCT3/4, SOX2, KLF4, and C-MYC (OKSM), serum response factor,
STEMIN, YAP5SA

Impact statement

The induction of reprograming factors, OCT3/4, SOX2, KLF4, and C-MYC (OKSM),

truly stands out from a myriad of regeneration studies, for their rejuvenation of senescent

organs, such as the adult heart. However, long term treatment of OKSM, as with

adenoviral expression, elicited cancers. Short term transfections of a regenerative

cocktail STEMIN, and YAP5SA synthetic mmRNA induced OKSM plus Nanog, and

rejuvenated infarcted hearts. Short-term treatments with STEMIN and YAP5SAmmRNA

delivery may become a safer strategy to treat debilitating human cardiac diseases.
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Introduction

We showcase breakthroughs in stem cell factor [1, 2] and

STEMIN and YAP5SA [3, 4] in heart regeneration. Human adult

heart lacks the intrinsic regenerative capacity to self-repair after

cardiac injury, such as a myocardial infarction (MI). Many of the

patients with ischemic heart disease not only undergo the acute

phase of MI, but also develop ischemic cardiomyopathy, due to

the loss of cardiomyocytes, and decreased cardiac function

culminating in heart failure [5]. Due to the low regenerative

capacity of cardiomyocytes, the damaged myocardium is

replaced by fibrotic scar tissue, which further reduces

pumping and circulatory function of the heart. Subsequently,

the cardiac remodeling process results in further fibrosis, loss of

cardiomyocytes, decrease cardiac function, and eventually

resulting in heart failure, the leading cause of death

worldwide [6].

Protecting the heart from progression to fatal heart failure

continues to be focus of treating ischemic heart diseases [7, 8].

Cardiac intervention via revascularization by thrombolysis, and

bypass surgeries to improve blood supply can salvage the injured

ischemic myocardium. Medications such as angiotensin-

converting enzyme inhibitors, angiotensin receptor-neprilysin

inhibitors, mineralocorticoid-receptor antagonists, and β-
blockers were proven to be effective on decreasing heart

failure mortality [6, 9, 10]. Patients could benefit from these

cardioprotective therapies targeting the remodeling process in

the failing hearts. However, efficacious therapies for advanced

cardiac remodeling in the later stages of heart failure are limited

[11]. Mechanical support therapies such as cardiac

resynchronization therapy and the application of left

ventricular assist devices show beneficial contributions to end-

stage heart failure patients [12], but the only treatment to end-

stage heart failure with definitive effects is heart transplantation,

which is limited by the lack of donor hearts [13].

Virtually the complete supply of human cardiomyocytes is

established within the first month of life, and there is a dramatic

drop in regenerative capacity within the first few days after birth

[14]. Naqvi et al. [15] showed that the IGF-1/IGF-1-R/Akt

pathway can be activated by a thyroid hormone surge in

juvenile mice and initiated a brief but intense cardiomyocyte

proliferative burst. Cardiomyocyte proliferation contributes to

developmental heart growth in children. The number of

cardiomyocytes in the left ventricle increased 3.4-fold

between the first year and 20 years of age [16]. Adult human

myocytes still maintain the ability to renew at approximately

1% per year, which was revealed by carbon-14 dating

experiments [17]. Therefore, the poor regenerative capacity

of adult human cardiomyocytes severely limits myocardial

repair after a cardiac scenario. This review will survey

potential therapies for the promotion of cardiomyocyte

endogenous regenerative capacity towards cell replacement

and cardiac repair.

Cell cycle regulation

Cell cycle regulators were among the first factors reported to

be sufficient for driving adult cardiomyocyte through cell cycle,

long before the trans-differentiation methods were published. In

2004, CNNA2 was reported to induce cardiac enlargement by

cardiomyocyte hyperplasia, when expressed from embryonic day

8 into adulthood [18]. Intramyocardial delivery of adenoviral

vector expressing CNNA2 could induce myocardial regeneration

and enhance cardiac function in injured heart [19] and

constitutive expression of CNNA2 could limit ventricular

dilation while enhancing cardiac function [20]. Besides

CNNA2, other cyclins such as CNND1, CNND2, and

CNND3 were also proved to promote cardiomyocyte cell cycle

activity [21, 22]. A discrete combination of cell cycle regulators

besides cyclins were reported to efficiently unlock the

proliferative capacity in cardiomyocytes that have terminally

exited the cell cycle. Overexpression of four factors cyclin-

dependent kinase 1 (CDK1), CDK4, CNNB1, and

CNND1 indicated as 4F could drive robust cell proliferation

in post-mitotic mouse, rat, and human cardiomyocytes, whereas

CDK1 and CNNB can be substituted by small molecules

SB431542 and MK1775 [23].

Growth factor stimulants

Growth factors were also described to have the ability to

stimulate mature cardiomyocytes entry into cell cycle. FGF1/

p38 MAP kinase inhibitor treatment after acute myocardial

infarction in 8 to 10-week-old adult rat could increase

cardiomyocyte mitosis. FGF1/p38 MAP kinase inhibitor

treatment of 4 weeks resulted in reduced scar tissue and

improved heart function [24]. However, a randomized clinic

trial did not support the strategy of p38 MAPK inhibition in

patients hospitalized with myocardial infarction. Losmapimod, a

selective, reversible, competitive inhibitor of p38 MAPK, did not

reduce the incidence of recurrent major adverse cardiovascular

events in patients hospitalized with acute myocardial infarction

[25]. In a swine model, IGF-1/HGF therapy was able to improve

cardiac function in chronic myocardial infarction heart, and

further increases can be observed by using an improved new

delivery method, UPy hydrogel [26]. Nevertheless, treatments of

growth factors not only stimulate the capacity of cardiomyocytes

to re-enter cell cycle, but also fibroblasts to enter the

cell cycle [26].

Manipulate signaling pathways

Signaling pathways involved in cardiogenesis and

cardiomyocyte maturation were also investigated for their

ability to promote cardiomyocyte regeneration. Meis1 deletion
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in mouse cardiomyocytes was sufficient to extend the

proliferative window of postnatal cardiomyocytes and

reactivate cardiomyocyte mitosis in adult mouse heart without

deleterious influences [27]. Paracrine factors such as Fgf16 were

also reported to be potential regulatory factors in promoting

myocardial repair [28]. GATA4 regulates neonatal heart

regeneration through regulating expression of FGF16, and

overexpression of FGF16 via adeno-associated virus in Gata4-

ablatedmice heart could partially rescue cardiac hypertrophy and

improve cardiac function after injury. Tbx20 overexpression in

adult cardiomyocyte directly represses cell-cycle inhibitory genes

Meis1, Btg2, and p21, hence promotes adult cardiomyocyte

proliferation and preserves cardiac function after myocardial

infarction [29]. Hippo signaling pathway has appeared to be a

key regulator of cardiomyocyte proliferation [30–33].

MicroRNAs such as miR302-367 cluster have been shown to

regulate cardiomyocyte proliferation [34]. miR590 and miR199a

were reported to act as key regulators of cardiomyocyte

proliferation [35].

Cell reprogramming

In the past decade, with the advent of iPSC technology,

numerous cell differentiation methodologies have been

developed [36–38]. Somatic cell reprogramming of adult

murine cardiac fibroblasts into beating cardiac-like myocytes

in vitro were first established by the introduction of four

transcription factors, GATA4, HAND2, TBX5, and MEF2C

[39]. Also, microRNAs were proven to mediate somatic cell

transdifferentiation into cardiomyocyte-like cells. For example,

a combination of microRNAs (miR-1, miR-133, miR-208, and

miR-499) could induce direct cellular reprogramming of

fibroblasts to cardiomyocyte-like cells both in vitro and in

vivo. [40] The authors demonstrated that a single transient

transfection of the miRNAs was able to mediate

reprogramming confirmed by expression of mature

cardiomyocyte markers, exhibition of cardiomyocyte

spontaneous calcium flux characteristic, and sarcomeric

organization. Wang et al. [40] demonstrated that the

introduction of “GMT” factors Gata4, Mef2c, and Tbx5 could

mediate the resident non-cardiomyocyte in the murine heart to

be reprogrammed into cardiomyocyte-like cells in vivo. Islas et al.

[41] reported that mammalian mesoderm posterior (MESP)

homolog and v-ets erythroblastosis virus E26 oncogene

homolog 2 (ETS2) can reprogram primary human dermal

fibroblasts into cardiac progenitor cells, whereas Nam et al.

[42] showed that four human cardiac transcription factors,

GATA4, Hand2, T-box5, myocardin, and two microRNAs,

miR-1 and miR-133, can activate cardiac specific marker

expression in both neonatal and adult human fibroblasts.

Purely chemical means by introduction of small molecules

and chemical cocktails were soon discovered to conduct direct

reprogramming of fibroblasts to functional cardiomyocytes.

Treatment of a combination of nine compounds termed 9C to

can reprogram human fibroblasts to uniformly contracting

induced cardiomyocyte-like cells [43]. Bypassing the use of

viral-derived factors, automatically beating cardiomyocyte-like

cells could be generated from mouse fibroblasts only by addition

of chemical cocktails instead of transcription factors [44]. The

studies of purely chemical means replacing viral-derived factors

laid foundations for potential safer treatment for heart failure.

Reprograming factors, OKSM

Recently, short-term in vivo transgene induction of

reprogramming factors OCT3/4, SOX2, KLF4, and C-MYC

(OKSM) for less than a week generated partial reprograming,

rejuvenated senescent organs, and extended mouse lifespans [1].

Transgenic expression of OSKM in vivo improves recovery from

metabolic disease and muscle injury in older wild-type mice.

Partial reprogramming may, lead to rejuvenating effects in

different tissues, such as the kidney and skin [45]. The

rejuvenating effects were associated with reduced expression

of genes involved in inflammation, senescence and stress

response pathways. Mechanistically, epigenetic chromatin

remodeling occurs during shorter term OKSM treatment

which coincides with anti-aging. But, long term transgene

expression by adenoviruses may cause tumorgenesis [45].

Indeed, a recent study showed that in vivo expression of

OKSM transgenes caused murine heart cell regeneration [2].

Short-term expression of OKSM did not cause cancer but was

sufficient to induce cell replication and rejuvenation. However,

long term treatment of OKSM, as with adenoviral expression,

elicited cancer like transformation. Thus, to rejuvenate senescent

myocytes and expand their number after a cardiac infarct, adult

myocytes may need to be taken backwards to a primitive

replicative state driven by stem cell factors for short term

expression. Avoidance of long term expression from viral

vectors provide a strong rationale of the use of synthetic

mode RNA for short term transfections into cardiac myocytes.

Synthetic RNA delivery to
cardiac myocytes

The idea of gene transfer by mRNA as a method to transfer

somatic genes into mammalian tissue was first introduced, by

Bhargava and Shanmugam [46]. Wolff et al. [47] injected vectors

expressing mRNA encoding luciferase, chloramphenicol

acetyltransferase, and β-galactosidase into mouse skeletal

muscle in vivo. Protein expression was detected for all the

genes, which marked the opening for the use of mRNA as a

method to somatic gene transfer method into mammalian tissue.

However, this method had limited use because of the immune
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response that mRNA elicited [48]. Unmodified mRNAs can be

recognized by the innate immune system of the cells via toll-like

receptors [49], thus promoting the degradation of the

unmodified mRNA. Fortunately, modified mRNA was made

to bypass toll-like receptors. Modifying mRNA’s (mmRNA)

secondary structure, substituting uridine with pseudouridine,

and replacing cytosine with 5-methyl-cytosine can all lead to

less recognition by nucleases and toll-like receptors [49].

STEMIN and YAP5SA induced OKSM

A schematic diagram of STEMIN and YAP5SA synthetic

mmRNA induction of the cardiac myocyte regeneration

pathway. STEMIN and YAP5SA synergize by the activation of

the stem cell factors OCT4, KLF4,SOX2 and C-MYC (OKSM) +

Nanog, shown in Figure 1. Evidence provided by Chen et al. [2]

and Xiao et al. [3, 4] showed that OKSM treatment of adult

cardiac myocytes has a fundamental role in inducing replication

and the inhibition of myocyte differentiation, taking cardiac

myocytes backwards to a more primative developmental state.

Xiao et al. [3] discovered that a triplet alanine mutation of

N-terminus of SRF’s MADS box SRF153 (A3), termed

STEMIN, showed powerful activation of stem cell factors, and

inhibited the induction of sarcomere assembly factors and

cardiac myocyte specific genes. The triplet alanine mutation at

aa153, aa154, and aa155 of the N-terminus of SRF’s MADS box

blocked the interaction of Nkx2.5 and GATA4 required for

facilitating SRF DNA binding to CArG boxes; thus, blocking

myocyte differentiation. Xiao et al. [3] showed the ability for

STEMIN to be the “myogenic driver” was completely abrogated

in the SRF null ES cells. The mutation of aa154 lysine to an

alanine in the MADS box severely weakened SRF153(A3)

transcription of many CArG-dependent cardiac-specified

FIGURE 1
Schematic diagram of STEMIN and YAP5SA synthetic mmRNA induction of the cardiac myocyte regeneration pathway. STEMIN and YAP5SA
synergize by the activation of the stem cell factors OCT4, KLF4,SOX2 andC-MYC (OKSM) +Nanog. Evidence provided by Chen et al. [2] and Xiao et al.
[3, 4] showed that OKSM treatment of adult cardiac myocytes has a fundamental role in inducing replication and the inhibition of myocyte
differentiation, taking cardiac myocytes backwards to a more primative developmental state. In addition, Xiao et al. [3, 4] showed that STEMIN
and YAP5SA growth factor pathways plus telomerase maintence gene activities repaired infarcted mouse hearts and the potential for blocking
cell death.
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genes. Rescue of SRF null ES cells with lentiviral expressed triplet

SRF mutant, STEMIN inhibited the induction of several cardiac

myocyte specific genes, such as those encoding sarcomeric actins,

heavy and light chain myosins, ion channels, and structural

proteins. And caused powerful activation of stem cell marker

genes, such as Egr1, Rex1, Nanog, Oct4, Zic3, Dppa2, Dnmt1,

Dnmt2, and proliferin [3].

Constitutive YAP1 activity by
mutant YAP5SA

Transcription co-activator YAP can be an effective target to

manipulate due to its function, as the key regulator in Hippo

signaling pathway. Zhao et al. [50] generated and active form of

YAP, termed YAP5SA, by mutating all the LATS1/

2 phosphorylation sites. The phosphorylation sites mutation

of YAP prevents 14-3-3 binding, thus preventing YAP protein

degradation. YAP5SA enters nucleus and binds with TEAD to

regulate nuclear targets. Recently, YAP5SA has been proven to

partially reprogram the highly differentiated adult mouse

cardiomyocytes to a more primitive proliferative state [51].

The mutual role of STEMIN and YAP5SA synthetic

mmRNA was tested in adult rodent cardiomyocytes. Xiao at

al [3]. showed adult cardiomyocytes entered the mitotic cell cycle

24 h post-transfection. Their synthetic mmRNA declined by at

least 90%within 24 h and was undetectable by 48 h supported the

notion of the rapid turnover of mmRNA. We then asked, how

does STEMIN and YAP5SA activate nuclear replication so

quickly? Azeez Muili, a recent doctoral student, discovered

that transfection of neonatal rat ventricular myocytes

(NVRM) with STEMIN mmRNA for 24 h revealed the

induction of NANOG by anti-NANOG staining, and

significant induction of NANOG and OCT4 RNA, but not

KLF4, SOX2 and C-MYC transcripts assayed by quantitative

PCR and by RNA sequencing [3]. In fact, in comparison to

transfected YAP5SA, NANOG, and OCT4 transcripts were

induced to a greater extent with STEMIN, while YAP5SA

upregulated C-MYC. Together STEMIN and YAP5SA

synergized and induced KLF4 and SOX2 and the stem cell

program similar to short term OKSM transgenic expression [2].

Next, the expression of cyclins appeared to be repressed in

murine ES cells in the absence of SRF. Rescue with wild-type SRF

caused activation of cyclins, CNNB1, CNND1, CNNC, and

CNNE1, while STEMIN strongly induced CNNA2, CNNB1,

and CNNE1. Note the induction of CNNA2 fostered

myocardial regeneration and enhance cardiac function in

injured heart [19, 20]. Most of the crucial genes involved in

DNA replication in the replisome pathway, such as ORC2,

MCM2, CDC45, and CLASPIN, were significantly increased

by STEMIN and YAP5SA mmRNA in the G1 phase of the

cell cycle. Mitotic genes such as, Bub1, Bub1b, Cenpe, Ndc80,

CcnB1, and Dync1 was observed by 32 h and the appearance of

DNA packaging genes, which mark the S phase of the cell cycle,

including histone 1 genes, such as Hist1h1a, Hist1h1b, and

Hist1h2ba, by 40 h post transfection. Upregulation of crucial

cell cycle genes such as Plk1 and Anln suggested that STEMIN

and YAP5SA promoted several steps of cell-division cycle of

cardiomyocyte. In addition, DIAPH3 was localized to multiple

regions between and surrounding dividing nuclei [3, 4].

DIAPH3 marks anaphase of the cell cycle and induced F-actin

to help assemble a contractile ring during cytokinesis. By 40 h

post-STEMIN and YAP5SA treatment, many cardiac-specified

genes including Actc1, Myh6, Myocd, and Mef2C were

downregulated. Thus, STEMIN and YAP5SA mmRNA is a

potent activator of stem cell gene activity of OKSM plus

Nanog, cell replication and inhibitor of cardiac-specific

gene activity.

A new molecular technology named ATAC seq (Assay for

Transposase-Accessible Chromatin using sequencing) accesses

remodeled open chromatin DNA with an hyperactive mutant

Tn5 Transposase that inserts sequencing adapters into open

regions of the genome [52]. Sequencing TnT5 bound DNA

revealed regions of increased accessibility and maps

transcription factor binding sites. To identify the underlying

mechanism of how STEMIN works as a novel transcription

factor, we used ATAC-seq to create a bioinformatics

topography of interactomes of STEMIN, wildtype SRF, and

YAP5SA. Xiao et al. [3] findings suggest a complementary

effect of YAP5SA and STEMIN interactions with known and

novel co-factors.

SRF has several tissue-specific regulatory cofactors, such as

Nkx2.5 and GATA4, that control SRF activity by interacting with

SRF’s MADS box [3]; whereas, YAP does not directly bind to

DNA or bind directly to SRF [53]. ETS factors bind well to

wildtype SRF as previously shown [54–56] and to mutant

STEMIN [3]. TEAD1 or TEF1, one of SRF’s cofactors shown

by our previous studies [57, 58] to physically interact with SRF,

may also serve as a bridge between YAP5SA and STEMIN to

implement their synergy. STEMIN’s interactome prefers

recruitment by ETS factors, and CTCF, SP1, RBPJ, NFAT5,

and TEAD1. In addition, we found many new YAP5SA

cofactor associations with DNA binding cofactors ETS1, SP2,

SP1, JUNB, FOS, CTGF, IRF3, MEF2C, and RBPJ, as well as its

well-known cofactors RUNX1, SMAD3, and TEAD1 [3].

YAP5SA interactomes also revealed considerable association

with SRF and its cofactors, previously not shown. Thus,

STEMIN and YAP5SA share interactive associations with

many more transcription factors than previously imagined,

providing a powerful spectrum of transcription regulators that

are strongly pro-replicative.

ATAC-seq also revealed chromatin remodeling of many

growth factors and signaling pathway genes, including FGFs,

BMPs, Notchs, and Wnts. [3] Activation of non-canonical

WNT5A/B and WNT11, stimulates cardiomyogenic

proliferation [59–61]. WNT5A/WNT11 inhibits
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CTNNB1 signaling and promotes cardiac progenitor

development in differentiating embryonic stem cells.. Signaling

pathways that express STATS and JAKS, such as STAT5 and

JAK3, have key roles in cellular growth [62]. In addition, YAP

signaling has a strong impact on inducing IGF1, IGF2, and their

binding proteins and gene remodeling to enhance cell growth

and resist apoptosis [63].

Co-expression of STEMIN and
YAP5SA repaired infarcted adult
mouse hearts in vivo

We tested the treatment combination of STEMIN and

YAP5SA mRNA in vivo by injecting directly into the left

ventricles of adult mice after myocardial infarction [4]. The

mmRNA injection method with the co-transfectant agent,

Lipofectamine MessengerMAX, delivered STEMIN and

YAP5SA mmRNA together into 5 precise injection sites

surrounding the infarct in the mouse left ventricle proved to

be an effective, precise, and leak-free method. In the short-term

experiments, we were able to detect incorporated 5-ethynyl-2′-
deoxyuridine (alpha-EdU) into DNA of transfected myocytes,

which co-stained with anti-SRF and anti-YAP antibodies, around

the needle tracts in the mRNA treatment groups. Co-staining

with Tnnt and pH3 antibodies marked replicated cardiac

myocyte nuclei in response to STEMIN and YAP5SA mRNA

injection [4]. Bioinformatic analysis revealed the upregulation of

multiple cell cycle gene clusters with co-expression of STEMIN

and YAP5SA, while gene clusters associated with cardiomyocyte

differentiation (GO: 0055007), sarcomeric assembly and cardiac

muscle contraction (GO: 0060048) were profoundly down

regulated. We further illustrated the improvement in mouse

cardiac function in long-term experiments for 4 weeks. Mice

cardiac function evaluated by echocardiography, revealed

improved cardiac pumping function by STEMIN and

YAP5SA mRNA co-injection.

STEMIN and YAP5SA may block
cardiac apoptosis

Induced myocyte proliferation may not be the only program

responsible for the maintenance and or growth of cardiac mass;

could the concomitant STEMIN and YAP5SA-induced

upregulation of pro-survival and anti-apoptotic miRNAs, as

observed from our ATAC-sequencing data [3], be responsible?

Preliminary studies revealed transfected STEMIN and YAP5SA

mRNAs alone and or in combination in cardiac myocytes for

24 h significantly inhibited CASP3 transcripts by over 65%–90%

and inhibited TP53 transcripts primarily with YAP5SA by over

50% (study in preparation). Thus, chromatin remodeling data

directed us to hypothesize that the inhibition of cell death may

also come into play in the viability of the cardiomyocytes. Studies

are underway to determine whether STEMIN and YAP5SA

might induce anti-apoptotic miRs through the

induction of OKSM.

Conclusion

Finally, synthetic mRNA may be used as a safe and efficient

gene delivery vehicle in adult hearts. Compared to viral vectors,

the transient gene expression that mmRNA provides is far more

controllable, which makes the mmRNA gene-delivery method a

safer option to deliver therapeutic factors for cardiac

regeneration. In fact, adenovirus delivery of stem cell factors

is initially curative for regenerating cardiac function, but it

causes cardiac rhadomyosarcomas in the long term [64]. Given

the post-transcription nature of mRNA, mmRNA does not

require transfer to the nucleus to get the expression of the

target protein. Besides, mmRNA-based gene delivery can

deliver gene combinations with different ratios specifically

tailored to patients with a different course of the disease.

Our data suggest that synthetic mmRNA may be used to

deliver STEMIN and YAP5SA into adult cardiac myocytes

both in vitro and in vivo to achieve high transfection

efficiency with little biosafety concern. Inducing tissue

regeneration by short-term treatments with STEMIN and

YAP5SA mRNA may become a useful and safer strategy to

treat debilitating human cardiac diseases.
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Abstract

Atherosclerosis has traditionally been considered as a disorder characterized by the

accumulation of cholesterol and thrombotic materials within the arterial wall.

However, it is now understood to be a complex inflammatory disease involving

multiple factors. Central to the pathogenesis of atherosclerosis are the interactions

among monocytes, macrophages, and neutrophils, which play pivotal roles in the

initiation, progression, and destabilization of atherosclerotic lesions. Recent

advances in our understanding of atherosclerosis pathogenesis, coupled with

results obtained from experimental interventions, lead us to propose the

hypothesis that atherosclerosis may be reversible. This paper outlines the

evolution of this hypothesis and presents corroborating evidence that supports

the potential for atherosclerosis regression through the restoration of vascular

copper homeostasis. We posit that these insights may pave the way for innovative

therapeutic approaches aimed at the reversal of atherosclerosis.

KEYWORDS

atherosclerosis, copper, macrophages, inflammation, reversal therapy

Impact statement

Recently advanced understanding of pathogenesis of atherosclerosis transformed the

disease treatment approach from slowing its progression to promoting the regression of

atherosclerosis. Copper plays a critical role in the regulation of structural integrity and

lipid metabolism of vascular tissue. However, copper is deficient in the atherosclerotic

vasculature, and contrarily elevated in the blood of atherosclerotic patients. Experimental

restoration of copper homeostasis between the vessel wall and the circulation reverses the

established atherosclerosis in animal models. It is predictable that the time is coming for

therapeutic reversal of atherosclerosis.

Introduction

Atherosclerotic disease is a chronic inflammatory condition that affects the wall of

arteries, resulting in a buildup of plaque and subsequent narrowing or blockage of blood
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vessels [1, 2]. Atherosclerosis is responsible for a range of

cardiovascular and cerebrovascular diseases, such as heart

attack, heart failure, and stroke. Atherosclerosis has been a

major contributor to the global burden of cardiovascular

disease, which remains one of the leading causes of mortality

worldwide [3].

Currently, atherosclerosis is widely considered as a

progressive and irreversible disease [4, 5]. As summarized in

Figure 1, clinical therapies primarily involve antagonistic therapy

approaches that focus on inhibition of factors contributing to the

occurrence and progression of the disease, with the aim of

delaying the progression of the disease and reducing the risk

of cardiovascular events due to plaque rupture [6].

Primary therapeutic interventions for atherosclerosis

includes lifestyle modifications, such as regular exercise, a

healthy diet, smoking cessation, and management of

hypertension, diabetes, and high cholesterol levels [7, 8]. Such

alterations in lifestyle can exert preventative effects at the nascent

stages of the disease, potentially restoring some patients to a state

of health [9–11]. However, these lifestyle modifications fail to

reverse the condition once the disease has progressed to the phase

characterized by intimal thickening within the blood vessels [12].

At this juncture, pharmacological interventions become the

cornerstone of atherosclerosis management.

Statins are commonly prescribed for effective reduction of

blood cholesterol levels and lowering the risk of plaque formation

[13, 14]. Furthermore, antiplatelet agents, such as aspirin, are

employed to inhibit blood clot formation within arteries [15, 16].

Moreover, medications including angiotensin-converting

enzyme (ACE) inhibitors and angiotensin receptor blockers

(ARBs) are prescribed to address hypertension, which often

concomitantly exist with atherosclerosis, thus contributing to

a comprehensive management strategy for the condition [17].

Inflammation is known to play a decisive role in the

progression of atherosclerosis. Therefore, inhibition of

inflammation is currently considered as the most important

treatment option [18–21]. While early administration of

broad-spectrum anti-inflammatory and anticoagulant drugs,

such as aspirin and colchicum, can reduce the risk of

cardiovascular events, these approaches, however, do not have

FIGURE 1
Current clinical approaches for the treatment of atherosclerosis. Antagonistic therapy against pathogenic factors is the mainstay of currently
clinical treatments for atherosclerosis. In the early stages of vascular lesions, disease risk factors can be reduced by changing one’s lifestyle. When the
thickening of the vascular endothelium and the degree of vascular obstruction is less than 30%, the disease progression can be controlled through
drug therapy. When vascular obstruction exceeds 70% or patients exhibit significant clinical symptoms, revascularization treatment can be
performed through surgery.
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a significant effect on regression of the disease condition [22]. In

addition, there are considerable risks associated with broad-

spectrum anti-inflammatory drugs, such as tumorigenesis [23].

It appears that, although current drug therapy can delay the

progression of atherosclerosis to some extent, the diseased vessels

remain prone to blockage or atherosclerotic plaque rupture.

Surgical treatment is typically reserved for patients with

advanced stage of atherosclerosis, particularly when the

vascular obstruction surpasses 70%, or when patients exhibit

significant clinical symptoms including pain or functional

impairments in the distal extremities, indicative of inadequate

blood flow [24]. The most common surgical procedures for

treating advanced atherosclerosis include angioplasty, stent

placement, and coronary artery bypass grafting (CABG).

Angioplasty entails the introduction of a balloon catheter

into a constricted artery, followed by balloon inflation to expand

the arterial passage [25]. In stent placement is to use a small metal

mesh tube implanted within the artery to hold it open [26].

CABG involves the transplantation of a healthy blood vessel to

circumvent the obstructed segment of the artery [27]. These

interventions aim to restore blood flow by physically clearing the

blockages. However, despite the effectiveness of these efforts, the

issue of progressive stenosis and re-occlusion of blood vessels

remains a significant challenge, putting patients at risk of

secondary surgery or acute vascular occlusion [28, 29].

Therefore, combating atherosclerosis is a challenging task.

There is an urgent need for a new approach focusing not only on

delaying the progression of the disease, but also on

fundamentally restoring the structure and function of the

diseased blood vessels. To achieve this goal, it is crucial to

establish new treatment strategies from the perspective of

promoting vascular repair and regeneration. These strategies

should be based on more advanced understanding of the

pathological mechanisms of atherosclerosis.

In this review, we summarize the advanced knowledge of

the pathogenesis of atherosclerosis, drawing attention to the

role of copper metabolism in maintaining vascular

homeostasis. We analyzed the potential of restoring copper

homeostasis in atherosclerotic plaque tissue to reverse the

progression of atherosclerosis. We also provided an overview

of the current research in this area and discussed the

challenges that need to be addressed for future

development of clinically feasible treatments for the

reversal of atherosclerosis.

The pathogenesis of atherosclerosis

Atherosclerosis is a progressively pathological process

characterized by chronic inflammation as its primary

pathogenic mechanism [21, 30]. The stages of its initiation

and development are outlined below and diagrammed

in Figure 2.

Endothelial cell dysfunction and lipid
particles accumulation

The vascular endothelium plays a critical role in regulating

homeostatic network of the cardiovascular system [31].

Endothelial cell dysfunction (ECD), which marks the initial

alteration in the trajectory of atherosclerotic lesion

progression, is typified by the activation of endothelial cells

(ECs) and their shift from an anti-inflammatory to a pro-

inflammatory state [32, 33]. Recent studies suggest that the

hemodynamic change is the primary cause of ECD [34].

Under undisturbed laminar flow, ECs exhibit an up-regulation

of Kruppel-like factor 2 (KLF2), a transcription factor integral to

maintain vascular equilibrium. This upsurge in KLF2 expression

precipitates an increase in endothelial nitric oxide synthase (eNOS)

gene expression, catalyzing the synthesis of nitric oxide (NO). NO, a

small lipid solublemolecule, traverses cell membranes to influence a

wide array of cell functions within the bloodstream and the vascular

endothelium [35–37]. NO’s effects include the inhibition of platelet

activation, adhesion, and aggregation [38], a reduction in leukocyte

adhesion to the endothelium [39], a facilitation of vasorelaxation

through dephosphorylation of myosin light chain in vascular

smooth muscle cells [40], and an enhancement of the oxygen

delivery capacity of red blood cells [41].

Steady laminar flow promotes the alignment of ECs [34] and

inhibits signal transduction by pro-inflammatory stimuli such as

TNF and interleukin-1 (IL-1) [42]. This hemodynamic condition

diminishes IL-6 induced progression of cell cycle in ECs [43], and

protects against ECs apoptosis, ensuring the endothelial

integrity [44].

Blood flow irregularities trigger ECs activation, leading to a

consequential decrease in eNOS gene expression and the

stimulation of nuclear factor kappa B (NF-κB) signaling

pathway [45, 46]. NF-κB plays a pivotal role in the initiation of

pro-inflammatory responses within the endothelium. These

responses include up-regulation of ECs surface adhesion

molecules including vascular cell adhesion molecule-1 (VCAM-

1); the release of chemokines such as monocyte chemoattractant

protein-1 (MCP-1) and Fractalkine; and the production of pro-

thrombotic mediators including tissue factor (TF), vonWillebrand

factor (vWF), and plasminogen activator inhibitor-1 (PAI-1), in

both their soluble and membrane-bound forms [47–49].

Activated ECs cause an increased production of reactive

oxygen species (ROS) [50]. The resulting oxidative stress, in

addition to prolonged inflammation, disrupts adherent

junctions, such as VE-cadherin and gap junctions, primarily

due to the reduction in NO levels [51]. This disruption leads

to an increased accumulation of sub-endothelial atherogenic

apolipoprotein B (ApoB)-containing lipoproteins, including

LDL, VLDL and chylomicrons [52, 53]. Importantly, the

increased ROS facilitates oxidative modification of ApoB-

containing lipoproteins [54], which act as dual-function agents

in the immune response: serving as antigens that initiate the
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adaptive immune response and as adjuvant molecules that

stimulate the innate immune system [55–57].

Lifestyle modifications and pharmacological interventions

can improve the blood microenvironment by lowering lipid

levels, restoring EC’s function. If ECs function is not restored,

the lipid deposition within the vessel wall will persist. The

retention of oxidized low-density lipoprotein (oxLDL) in the

intima of blood vessels acts as a constant source of inflammatory

stimulus, continuously activating ECs and triggering

inflammatory responses [58, 59]. Therefore, it is crucial to

remove oxLDL to suppress the pathogenesis of atherosclerosis.

Immune cell recruitment and foam
cell formation

Macrophages are the major immune cells that respond to

inflammation triggered by oxLDL, playing a pivotal role in the

FIGURE 2
The pathogenesis of atherosclerosis. Various pathological factors in the blood cause dysfunction of ECs, leading to lipid deposition in the
vascular intima. The oxidation of lipids to oxidized lipoproteins constitutes an initial inflammatory microenvironment, which further stimulates the
activation and inflammatory transformation of ECs. Monocytes in the blood are attracted into the vascular intima by inflammation, where they
differentiate into macrophages. In the inflammatory microenvironment, the steady state lipid metabolism in macrophages is disrupted, leading
to the engulfment of oxLDL without restriction. On the other hand, the ability of macrophages to excrete lipids is decreased, resulting in lipid
accumulation within macrophages and the formation of foam cells. Inflammatory macrophages exacerbate further development of inflammation,
and with the accumulation of a large number of foam cells, cell necrosis occurs, forming a necrotic core. Smooth muscle cells are activated by
inflammatory stimuli and form a fibrous cap on the surface of the plaque by migration, proliferation, and secretion of collagen, leading to the
formation of a stable plaque. As inflammation continues to intensify, the necrotic core continues to enlarge, smooth muscle cells undergo massive
necrosis, and the collagen fibrous cap becomes thinner and vulnerable. Ultimately, the plaque ruptures, leading to thrombosis.
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formation and progression of atherosclerotic lesions [55, 57].

Macrophages mainly originate from myeloid progenitor cells in

the bone marrow. Myeloid progenitor cells develop into

circulating monocytes, which can infiltrate into atherosclerotic

lesions from the bloodstream or from the spleen that acts as a

reservoir for monocytes in mice [60]. The recruitment of

monocytes to atherosclerotic lesions is mediated by the

activation of ECs.

Activated ECs initiate monocyte recruitment by enabling

their initial rolling on the endothelium through P-selectin

engagement, followed by the strengthening of monocyte

adhesion via interactions with immunoglobulin-G family

proteins, VCAM-1 and ICAM-1. Subsequent monocyte

infiltration into the subendothelial layer is driven by

chemokines such as MCP-1 and IL-8 [35, 61, 62]. Once

penetrating the intima of blood vessels, monocytes encounter

a pro-inflammatory milieu constructed by activated ECs and

oxidized lipid particles. This environment fosters the

transformation of monocytes into pro-inflammatory

macrophages, actively up-taking lipids [63, 64].

Macrophages play a crucial role in regulating plasma

lipoprotein content and metabolism [65]. Under normal

conditions, macrophages recognize native LDL via the LDL

receptor (LDLR). The LDL is then endocytosed and

transported to lysosomes, where the cholesteryl ester (CE) is

hydrolyzed to free cholesterol (FC) by acid lipase [66, 67]. The FC

is then transferred to the endoplasmic reticulum (ER) to be

esterified by acyl CoA:cholesterol acyltransferase 1 (ACAT1).

The CE produced by ACAT1 is stored in cytoplasm as lipid

droplets, undergoing a continual cycle of hydrolysis to FC by

neutral cholesterol esterases and re-esterification

by ACAT1 [68, 69].

Neutral cholesteryl ester hydrolase 1 (NCEH1) processes CE,

releasing FC that is transported out of the cell through ATP-

binding cassette (ABC) transporters, including ABCA1 and

ABCG1 and scavenger receptor class B1 (SR-BI) [70].

Apolipoprotein A-1 (ApoA-1) acts as a receptor for

cholesterol transported by ABCA1, while high-density

lipoprotein (HDL) accepts cholesterol transferred by

ABCG1 and SR-BI. This machinery is tightly regulated under

normal conditions to maintain cholesterol homeostasis. An

increase in FC in an ER regulatory pool triggers a signaling

cascade that down-regulates the LDL receptor, preventing foam

cell formation in hypercholesterolemia. Thus, these proteins

ensure an effective control of LDL and cholesterol content in

peripheral blood under normal conditions [71–73].

In atherosclerosis, the process of macrophage-dependent

cholesterol handling is disrupted. In addition to an increase in

the production of oxLDL, macrophages are stimulated by

multiple inflammatory factors and express various scavenger

receptors, including SR-A1, CD36, and lectin-like oxLDL

receptor-1 (LOX-1), which all have an affinity for oxLDL [74,

75], leading to an excessive uptake of oxLDL transforming

macrophages to foam cells [76]. Simultaneously, the activity of

ACAT is elevated, resulting in an overproduction of CE that

accumulate in the endoplasmic reticulum. Furthermore, the

expression of NCEH, ABCA1, and ABCG1 is decreased in

atherosclerosis, further exacerbating intracellular cholesterol

accumulation and foam cells formation [77, 78].

In addition to monocyte-derived macrophages, vascular

smooth muscle cells (VSMCs) also significantly contribute to

the foam cell population [79]. Clinical studies found that over

50% of foam cells may be derived from VSMCs in human

atherosclerotic lesions [80]. Intracellular cholesterol

accumulation inhibits VSMC gene expression (including α-
smooth muscle actin (α-SMA), smooth muscle myosin heavy

chain (SMMHC), and smooth muscle 22α (SM22α) and induces

the expression of pro-inflammatory and macrophage markers

[81]. VSMCs uptake oxidized LDL mainly through LDLR family

and SR family [75, 82, 83]. Compared to macrophages, VSMCs

are inefficient at lysosomal processing and cholesterol trafficking,

with a much low expression of ABCA1 [84], contributing to an

impaired cholesterol efflux [85]. In addition, ECs and dendritic

cells have also been reported to participate in the formation of

foam cells [86].

In short, lipids infiltrated in the vascular intima are engulfed

by macrophages, smooth muscle cells, and other cells, and

eliminated through lipid metabolism pathways. However, in

the pathogenesis of atherosclerosis, the balance between lipid

engulfment and elimination by the effector cells is disrupted. The

excessive engulfment of oxLDL leads to lipid accumulation in

these cells transforming these cells to foam cells. This progression

pushes the atherosclerosis lesion towards a more severe and

uncontrollable direction.

Necrotic core formation and plaque
rupture

During the process of intravascular adipose streaks

formation or pathological intimal thickening, inflammatory

ECs and macrophages attract more monocytes to infiltrate the

intima by secreting chemokines such as CCR2, CCR5, CXCR1,

and CXCR2 [87, 88]. In the early stage of vascular intimal lesions,

monocyte infiltration and aggregation are the main driving

factors, while in later stages, macrophage proliferation

becomes more important [89]. Inhibition of macrophage

proliferation has been shown to reduce the size of plaque [90].

Within the inflammatory milieu, macrophages and other

immune cells further release inflammatory factors, such as

transforming growth factor-β (TGF-β), platelet-derived growth

factor (PDGF) isoforms, matrix metalloproteinases (MMPs),

fibroblast growth factor (FGF), and heparin-binding epidermal

growth factor (HB-EGF), activating VSMCs located in the

arterial wall media [91, 92]. Activated VSMCs gain the ability

to proliferate, migrate, and secrete various extracellular matrix
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(ECM) proteins, and are attracted to the lesion to form a fibrous

cap that stabilize lipid plaques [93].

The formation of the fibrous cap makes the atherosclerotic

lesion less reversible. The persistence of inflammation leads to

the accumulation of apoptotic cells that cannot be cleared by

macrophages in a timely manner, causing secondary necrosis.

This in turn further promotes inflammation, oxidative stress, and

death of adjacent cells, forming a necrotic core [94–96].

The growth of the necrotic core causes a thinning of the

fibrous cap. The accumulation of inflammatory cytokines and

oxidative products in the vascular lesion provoke uncontrolled

accumulation of adjacent VSMCs and, consequently, decreased

synthesis of ECMs [96–98]. The components of the ECMs are

degraded by macrophage-derived MMPs [99, 100], elastase, and

tissue protease [101]. Under this condition, the production of

TGF-β is reduced, leading to a decrease in collagen production in

healthy VSMCs [102, 103]. In combination, these factors

accelerate the thinning of the fibrous cap.

Core necrosis and fibrous cap thinning transform stable

fibrous plaques to vulnerable plaques. Plaque rupture abruptly

exposes the plaque interior to circulating pro-coagulant factors

and platelets, leading to thrombosis [104, 105]. Atherosclerosis-

associated clinical events are mainly attributed to thrombus

detachment, causing acute vascular occlusion in major organs,

leading to myocardial infarction, pulmonary embolism,

and stroke.

Copper regulation of vascular
metabolism and function

Copper (Cu) is an essential mineral nutrient that participates

in cellular metabolism and function as a component of a number

of cuproenzymes, an integrated structural element, and a

regulatory agent [106–108]. However, Cu also catalyzes the

production of highly reactive oxygen species (ROS), which

have the potential to cause oxidative damage to lipids,

proteins, DNA and other molecules [109–111]. Therefore,

either Cu deficiency or excess can lead to diseases or affect

the progression of diseases including atherosclerosis.

Understanding the complexity of the role of Cu in vascular

homeostasis is helpful in designing targeted therapies for

reversal of atherosclerosis.

Cu promotion of angiogenesis

The involvement of Cu in angiogenesis has been known for

more than 40 years [112, 113]. In 1980s, studies using rabbits

demonstrated that Cu and Cu-binding proteins significantly

induced angiogenesis in the cornea [113]. It was further found

that CuSO4 alone stimulated the expression of VEGF in human

keratinocytes in a dose-dependent manner [114]. Following these

observations, a series of studies revealed that Cu is instrumental

in regulating various EC functions, including proliferation,

migration, and tube formation [115–117]. Cu-binding proteins

play a critical role in VSMCs migration [118–120] and blood

vessel maturation [115, 121]. Mechanistic understanding of the

role of Cu in angiogenesis during last two decades revealed that

Cu promotion of angiogenesis acts through its regulation of

hypoxia-inducible factor-1 (HIF-1) in multiple cell

types [122, 123].

The processes of Cu trafficking between intracellular

organelles are depicted in Figure 3, including the indications

of Cu regulation of HIF-1 transcriptional activity for

angiogenetic gene expression. The initial evidence of Cu

FIGURE 3
Cu trafficking in the cell and its regulation of HIF-1
transcriptional activity. The transportation of Cu by CTR1 enables
Cu chaperones to acquire Cu, transferring Cu to Cu-containing
enzymes and proteins. Three primary pathways have been
identified for Cu chaperones: (1) delivering Cu to CCO in
mitochondria by Cox17 and Sco1/Sco2 proteins; (2) delivering Cu
to SOD1 in the cytosol and mitochondrial intermembrane by CCS;
and (3) delivering Cu to secretory Cu enzymes such as extracellular
SOD3 and LOX by Atox1 via Cu transporter ATP7A located in the
trans-Golgi network. SOD3 protects cells by scavenging ROS. LOX
regulates the formation of ECM, playing an important role in
maintaining vascular homeostasis. In addition, under hypoxia
condition, CCS transports Cu to the nucleus, where HIF-1α
dimerizes with HIF-1β. The HIF-1 heterodimer recruits cofactors
such as p300/CBP and SRC-1 to form transcriptional complex, a
process may be inhibited by FIH-1. Cu-binding proteins (CuBP) act
as an inhibitor for FIH-1activation to ensure the formation of HIF-1
transcriptional complex. The interaction of HIF-1 with HRE
requires Cu to initiate the Cu-dependent expression of genes such
as VEGF and BNIP3. VEGF plays an important role in promoting
endothelial cell proliferation. The core base “GGAA” (the coremotif
of the ETS family) is a crucial motif in the binding site of Cu-
dependent genes.
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interaction with HIF-1 was reported by Jiang et al., who explored

how dietary Cu supplementation mitigates pressure overload-

induced cardiac hypertrophy in mice [124]. Sustained cardiac

pressure overload leads to reduced myocardial Cu and VEGF

levels, and diminished angiogenesis. Cu replenishment increases

VEGF and promotes angiogenesis in the hypertrophic hearts,

leading to regression of cardiac hypertrophy. Further studies

found that in cultured human cardiomyocytes, Cu chelation

blocks insulin-like growth factor (IGF)-1- or Cu-stimulated

VEGF expression, which is relieved by addition of excess Cu.

Both IGF-1 and Cu activate HIF-1α. Consequently, HIF-1α gene

silencing blocks IGF-1- or Cu-stimulated VEGF expression. In

addition, HIF-1α coimmunoprecipitates with a Cu chaperone for

superoxide dismutase-1 (CCS-1), and gene silencing of CCS-1

prevents IGF-1- or Cu-induced HIF-1α activation and VEGF

expression [124]. Thus, Cu promotion of angiogenesis is

mediated by HIF-1α activation of angiogenic gene expression

with the aid of CCS-1.

Cu regulates HIF-1 transactivation of angiogenic gene

expression in multiple mechanisms of action. Under hypoxic

conditions, Cu enters the nucleus in both CCS-1-dependent and

-independent processes [125]. In the cytoplasm, Cu stabilizes

HIF-1α, the rate-limiting component of HIF-1, leading to its

accumulation and promoting its entrance to the nucleus

[126–128]. In the nucleus, Cu inhibits the activity of

asparaginyl hydroxylase factor inhibiting HIF-1 (FIH-1) and

ensures the formation of HIF-1 transcriptional complex [129].

Importantly, Cu selectively regulates the binding of HIF-1 to the

HRE elements of target angiogenic genes by affecting the

interaction between the transcription factor and the promoter

region of the angiogenic genes [130, 131].

Cu selectively regulates the process of HIF-1 transactivation

of angiogenic gene expression. It is important to note that not all

of the HIF-1 regulated genes require Cu for expression [130, 132].

This was first demonstrated by an in vitro study in which the

treatment of HUVECs with a Cu chelator,

tetraethylenepentamine (TEPA), suppressed the expression of

a group of HIF-1 target genes such as BNIP3 and VEGF, but did

not affect other HIF-1 target genes such as IGF-2 [132]. This Cu

selective regulation of the expression of HIF-1-controlled genes

was further defined in studies of monkey model of HIF-1

regulation of angiogenesis in ischemic myocardium [133].

During the acute phase of ischemic injury, angiogenesis was

activated in the injured heart along with an increase in angiogenic

factors. In the chronic phase of myocardial ischemia, sustained

accumulation of HIF-1α was observed. However, the

accumulation of HIF-1α was not accompanied by the

expression of HIF-1-controlled angiogenic factors, including

VEGF, tyrosine-protein kinase receptor Tie-2, angiopoietin-1

(Ang-1), and FGF-1 in the ischemic myocardium [133]. On

the other hand, an up-regulation of HIF-1-controlled non-

angiogenic gene expression such as IGF-2 was associated with

HIF-1α accumulation [133].

This paradoxical phenomenon, HIF-1α accumulation being

accompanied by suppression of HIF-1 target angiogenic gene

expression, is now recognized to be ascribed to the reduced Cu

concentrations in the ischemic heart [133]. In response to

ischemic insult, Cu content in the heart is significantly

decreased, along with a significant increase in serum Cu

concentrations [134–136]. A recent study using ChIP-

sequencing and RNA-sequencing identified 218 Cu-dependent

and 10 Cu-independent HIF-1 target genes across the genome

under hypoxic conditions [131]. Cu efflux from the heart under

hypoxic conditions leads to suppressed expression of Cu-

dependent HIF-1 target genes, but does not change the

expression of Cu-independent HIF-1 target genes.

Themechanism by which Cu selectively regulates the binding

site of the HIF-1 target genes was recently revealed by a study in

HUVECs [130]. In this study, Cu deprivation by TEPA

completely suppressed the binding of HIF-1α to HRE site of

BNIP3 along with a complete inhibition of BNIP3 mRNA

expression, but the binding of HIF-1α to the HRE site of IGF-

2 or the expression of IGF-2 mRNA was not affected under

hypoxic conditions. Furthermore, de novo motif analysis of all

218 Cu-dependent and 10 Cu-independent HIF-1 target genes

further revealed that the core bases “GGAA” and “TTCC,”

previously identified as the core motifs for E26-

transformation-specific (ETS) family [130] constitute the

critical motifs for the binding sites of Cu-dependent genes,

while there is no specific motif found in Cu-independent

genes except the motif for HIF-1α [130]. The difference in the

binding loci and pattern between all the Cu-dependent and Cu-

independent HIF-1 target genes indicate that Cu, by selectively

affecting the binding of HIF-1α to the critical motifs in the

promoter and putative enhancer regions of HIF-1-regulated

genes, selectively regulates the expression of HIF-1-controlled

angiogenic genes.

Cu regulation of endothelial cells (ECs)

The regulatory action of Cu on ECs, as depicted in Figure 4,

promotes angiogenesis. Cu at physiologically relevant levels

stimulated vessel tube formation from HUVECs cultured in

Matrigel [115], indicating the involvement of ECs

proliferation, migration and integration in this process. ECs

migration is a critical process in the vessel tube formation. Cu

stimulation of ECs migration was confirmed using HUVECs for

wound healing and transwell migration assays [115]. In the

process of Cu stimulation of ECs migration, a Cu transporter-

1 (CTR-1) is critically involved. Gene silencing by siRNA

targeting CTR-1 in HUVECs significantly suppressed Cu

entrance to the cells along with an inhibition of ECs

migration [115].

Cu promotes ECs proliferation that is essential for the

maturation of new blood vessels. Recent studies showed that
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Cu stimulates ECs proliferation in a concentration-dependent

fashion within the effective concentration range [115–117]. NO

generated by eNOS plays a critical role in regulating ECs

proliferation, angiogenesis and vascular homeostasis [117]. Cu

stimulation of ECs proliferation is eNOS-dependent [117]. Li

et al found that Cu increased the expression of eNOS in HUVECs

and that siRNA targeting eNOS blocked Cu stimulation of ECs

proliferation [117].

Exposure of ECs to excessive Cu stimulates the expression of

pro-inflammatory cytokines in the cells, leading to endothelial

dysfunction [35, 137]. Excessive Cu accumulation in the blood was

found in the pathogenesis of atherosclerosis. It is important to note

that under the condition of atherosclerosis, Cu is deficient in the

atherosclerotic lesion walls, but Cu concentrations are increased in

the circulation [138–142]. The endothelial dysfunction is closely

related to the disturbance in Cu homeostasis between the vascular

wall and circulation, being the critical event in the initiation and

progression of atherosclerosis [32, 33, 143].

Serum Cu elevation is closely associated with

hyperhomocysteinemia [144]. Experimental and clinical studies

over the last decade have shown that the elevation of blood

homocysteine (Hcy) levels is linked to increased risk of

atherosclerosis [145, 146]. Patients with homocystinuria were

associated with high plasma Cu concentrations [144, 147, 148].

A correlation between plasma concentrations of total Cu and Hcy

was identified [149, 150]. Addition of small amounts of Cu

significantly enhanced the inhibitory effect of Hcy on ECs

function, thus suppressing angiogenesis in isolated endothelial

tissues in culture [151]. Cu and Hcy complexes have been

identified in vitro and their exposure to cultured ECs elicited

remarkable changes in relation to atherogenic activities [152–155].

Cu regulation of lipid metabolism

There is increasing evidence that indicates a strong

correlation between Cu homeostasis and lipid metabolism.

Systemic Cu alterations appear to be inversely correlated to

the level of lipids and lipid-transporting lipoproteins in the

peripheral circulation [156, 157]. It was observed that Cu-

deficient diet feeding induced Cu deficiency in organ systems

in rats along with increased levels of circulating HDL and LDL,

and an increase in total cholesterol, triglyceride and phospholipid

levels [158, 159]. The total volume of HDL components in the

blood was elevated in Cu deficient Sprague-Dawley rats,

accompanied by a corresponding increase in the cholesterol

and protein content of the HDL and LDL fractions [159, 160].

In Cu deficient rats, the triglyceride content of circulating LDL

FIGURE 4
Cu regulation of endothelial cells. (A) Cu induces migration of ECs by regulating the expression of FGF-1 and VEGF. Specifically, Cu stimulates
the release of FGF-1 from ECs by promoting FGF-1 binding to S100A13 and p40Syt1. Cu promotes HIF-1 transcriptional activity leading to increased
VEGF gene expression. VEGF, in turn, regulates the dynamic transition of ECs by controlling the relative levels of VEGFR1 and VEGFR2. (B) Cu
modulates EC-involved lumen formation by promoting the action of ANG-1 and elastin. ANG-1 is involved in vasculature stability, tightening cell
contacts, inducing pericyte adhesion, and preventing alterations in vessel permeability. (C) Cu promotes proliferation of ECs by activating eNOS and
FGF-1.
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and VLDL was increased, as was the ApoE content of HDL [159,

160], however, the concentration of liver cholesterol was reduced

[161]. Systemic Cu deficiency is associated with an increased

production of HDL and an increased turnover of HDL

cholesterol esters [159].

The polarity of macrophages affects the role that they play in

the regulation of lipid metabolism [162]. Cu in its Cu2+ ionic form

was found to play an important role in the regulation of

macrophage polarization [163]. The concentrations of Cu2+

lower than 10 μM promoted the expression of M2 related genes

in macrophages. However, higher concentrations of Cu2+

(100 μM) stimulated pro-inflammatory marker expression

[163]. This bipolar regulation of macrophages by Cu ions is of

a significant impact on the role of macrophages in the initiation

and progression of atherosclerosis. In particular, the elevation of

Cu concentrations in the blood in the progression phase of

atherosclerosis would affect the severity of atherosclerotic lesions.

The oxidative modification of LDL is a key event in human

atherosclerosis. Cu ions catalyze oxidative modification of LDL

in vitro [164–166]. It was also reported that Cu participates in the

oxidation of LDL in vivo [167]. It was found that high cholesterol

feeding leads to Cu deficiency in the vessel tissue and Cu

elevation in the plasma [138]. The increase in plasma Cu

associated with high cholesterol feeding would promote

oxidative modification of LDL, thus promoting atherosclerosis.

HDL is more sensitive to oxidation by Cu than LDL [168, 169].

Dose-dependent oxidative damage to HDL and protective effect

of vitamin E against oxidation of HDL was observed in the

studies of Cu incubation with HDL [170].

Cuproptosis, a newly identified Cu-induced cell death, occurs

via Cu binding to lipoylated enzymes in the tricarboxylic acid

cycle, leading to subsequent protein aggregation, proteotoxic

stress, and eventual cell death [171]. It is possible that high

levels of plasma Cu under the condition of atherosclerosis cause

cuproptosis of macrophages and other immune cells in the

circulation, leading to unbalanced immunological responses in

the circulation. However, cuproptosis may not take place in the

endothelial cells because they cells are Cu deficient under the

condition of atherosclerosis [138, 139]. This phenomenon, high

circulation versus low tissue Cu levels, underscores the critical

role of Cu homeostasis in health and diseases, as discussed in

several recent reviews [172–174].

Cu regulation of extracellular matrix

The maintenance of vascular homeostasis depends on the

dynamic stability of the cells and ECM that constitute blood

vessels. Cu is involved in the regulation of vascular cells and the

ECM via many factors and enzymes, as depicted in Figure 5.

Oxidative stress disrupts vascular homeostasis by impairs

ECs function and vascular wall. Cu is a constituent of superoxide

dismutase (SOD) and ceruloplasmin (CP), both are importantly

involved in preventing oxidative injury [175–178]. It was also

FIGURE 5
Cu regulation of vascular homeostasis. Cu prevents oxidative injury in the vascular system by ensuring the activity of key enzymes such as SOD,
ceruloplasmin, and CCO. Moreover, Cu is essential for LOX activity, which is responsible for ECM remodeling during initiation and maturation of
vascularization.
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shown that low dietary Cu intake reduces glutathione peroxidase

activity [179, 180]. Cu is required for mitochondrial cytochrome

c oxidase (CCO) activity, rendering it essential for oxidative

phosphorylation [181]. Cu deficiency leads to depressed activity

of CCO [124, 182, 183]. These abovementioned enzymes or

proteins are so crucial for maintaining the homeostasis of

vascular system [184–189].

Several in vitro studies have examined Cu redox activity [190,

191]. Cu is redox active and involved in ROS generation [191].

Exposure to elevated levels of Cu significantly decreases glutathione

levels [192]. The depletion of glutathione may enhance the

cytotoxic effect of ROS and allow the metal to be more

catalytically active, thus producing higher levels of ROS [193].

However, it has been demonstrated that there is virtually no free Cu

in the biological system [194]. Therefore, the redox injury generated

from free Cu in vitro studies may not extrapolated to the in vivo

conditions. A general belief is that Cu-related generation of ROS is

more related to Cu overload [195–197], but it is Cu deficiency that

causes severe oxidative stress partially resulting frommitochondrial

respiration defects due to CCO depression [182].

The ECM is an important component of the blood vessel wall

and is essential for maintaining the structural integrity of blood

vessels. Cu is essential for the synthesis and maturation of ECM.

Fibronectin, an avascular elongation promoter [198], was

observed to be increased in cultured ECs in exposure to trace

amounts of Cu [199]. Fibronectin mats were strengthened when

a small amount of Cu was present [200]. Lysyl oxidase (LOX) is a

critical enzyme involved in the ECM remodeling, and Cu is

required for the LOX activity [201]. Elastin is required for the

lumen formation and maintenance. Studies conducted in swine

found that Cu is associated with aorta elastin and essential for the

function of the vessels [202–204].

Therefore, Cu is essential for vascular homeostasis through its

action onmultiple enzymes or proteins involved in the regulation of

vascular cells and ECM. In most cases, the disturbance of vascular

homeostasis would result from Cu deficiency, although Cu overload

also causes severe consequences in vascular homeostasis. In terms of

atherosclerosis, Cu deficiency in the vascular tissue and Cu overload

in circulation are often observed concomitantly, leading to a double

damage to the vessel wall.

Disturbance of Cu homeostasis in
atherosclerosis

Cu concentrations were significantly reduced in

atherosclerotic vascular walls [142]. High dietary cholesterol

feeding causes hypercholesterolemia and atherosclerosis in

animal models [139, 205]. During the process of fatty

substances deposition and vascular wall hardening in large

and medium-sized arteries [206], Cu concentrations in the

atherosclerotic wall became significantly reduced compared to

that in the normal aortic wall [139, 142]. This reduction in Cu

concentrations leads to decreased proliferation and migration of

endothelial cells, and inhibits the synthesis of ECM. Therefore,

Cu deficiency has been postulated to be a triggering event of

atherosclerosis in high cholesterol-fed animals, alongside

multiple other hypotheses on the etiology of atherosclerosis

induced by high dietary cholesterol [207–209].

Many studies from animal models to human clinical data

reported that plasma Cu levels are significantly elevated along

with hypercholesterolemia in atherosclerotic subjects [140, 141].

Two cross-sectional clinical studies with apparently healthy

subjects showed that serum Cu was inversely associated with

low-density lipoprotein cholesterol (LDL-C), suggesting that a

higher or adequate serum Cu level is linked to a better lipid

metabolic state [210]. It was interesting to note that the reduction

of Cu in the atherosclerotic lesion vessels is associated with an

increase in the serum Cu concentrations [138]. Although the

reason for Cu loss in the atherosclerotic wall and increase in the

serum are unknown, a recent study clearly demonstrated an

inverse correlation between Cu concentrations in vascular plaque

and the severity of atherosclerotic lesions [138].

In brief, Cu plays a crucial role in the process of vascular

development and homeostasis. Maintaining Cu homeostasis is

essential for maintaining vascular stability, including its regulation

of ECs function and lipid metabolism, as well as combating

oxidative stress. Numerous studies have shown that Cu

homeostasis in vascular tissue is disturbed during the process of

atherosclerosis, with Cu being lost from atherosclerotic plaques but

increased in the plasma. This process is directly related to the

severity of vascular disease. Therefore, we hypothesize that

reversing treatment of atherosclerosis can be achieved by

restoring Cu homeostasis in the diseased blood vessels.

Reversal of atherosclerosis by
restoring vascular Cu homeostasis

There have been numerous exploratory studies on the use of

Cu supplementation for the treatment of atherosclerosis,

although the results generated are uncertain and sometimes

controversial. David et al [211] found that dietary Cu

supplementation reduces atherosclerosis in the cholesterol-fed

rabbit. Eman et al. found that Cu supplementation reduced

cholesterol diet-induced atherosclerosis in rabbit [209].

However, a meta-analysis of 176 randomized controlled

clinical trials showed no effect of Cu supplementation on lipid

levels [212]. Similarly, another study found that dietary Cu

supplementation had no significant effect on atherosclerosis or

serum lipid levels in rats [213].

We made an effort to clarify possible differences among these

confounding results. As shown in Figure 6, we fed laboratory

rabbits a high-fiber diet supplemented with 1% (w/w) cholesterol

for 12 weeks to create an atherosclerosis model [214]. Rabbits fed

a cholesterol-supplemented diet had higher serum cholesterol
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levels and developed atherosclerosis. Cu concentrations in the

cholesterol-fed rabbits were increased in the serum and kidney

but decreased in the atherosclerotic lesion walls and multiple

organs, including heart, liver, spleen, and lungs [138]. These

results indicate that the body as a whole is not deficient in Cu

during the pathogenesis of atherosclerosis caused by high

cholesterol, but Cu homeostasis is altered, leading to

unbalanced distribution of Cu to different organ systems

[138]. Therefore, if a simple dietary Cu supplementation

would only increase Cu levels in the blood, but would not

help to replenish Cu content in the Cu deficient organ

systems, including the atherosclerotic vessel walls.

There are studies showing that the increase in serum Cu

levels can exacerbate LDL oxidation, whichmay lead to worsened

atherosclerosis [215]. Thus, a simple dietary Cu supplementation

approach would not be a reasonably feasible approach to

replenish Cu in the Cu-deficient vessel wall due to the risk of

adverse effects of further serum Cu elevation. The fundamental

problem to be solved in the reversal of atherosclerosis by Cu

supplementation is how to supplement Cu to the Cu deficient

target organ systems.

To solve this problem, we developed an ultrasound-assisted

Cu-albumin microbubbles (Cu-MB-US) target-specific Cu

delivery procedure [215]. In this procedure, Cu was first

reacted with albumin to form a Cu-albumin complex,

followed by a microbubble formation through ultrasonic

vibration. The Cu-albumin microbubbles were then injected

intravenously into rabbits with atherosclerotic vessel lesions.

High-energy ultrasound was used to irradiate the

atherosclerotic lesion area. As the Cu-albumin microbubbles

flowed through the area with blood, the high-energy

ultrasound induced the collapse of the microbubbles, causing

instant cell cavitation-directed penetration of Cu into the lesion

tissue. This process achieved atherosclerotic lesion-specific

Cu delivery.

The treatment with Cu-MB-US resulted in an average of

24.2% reduction in lesion surface area (from an average of 79.0%

without treatment to an average of 54.8% after treatment). The

use of pure albumin microbubbles demonstrated no therapeutic

effect [215]. Furthermore, the treatment with Cu-MB-US did not

increase Cu levels in plasma, but did significantly increase Cu

levels in the diseased vascular tissue [215]. There was an inverse

correlation between Cu concentration and the size of the

atherosclerotic lesion [215]. Histopathological examination

demonstrated that the reduction in atherosclerotic plaques

was associated with a decrease in lipid content within the

arterial wall after the Cu-MB-US treatment. Moreover, Cu

repletion significantly reduced the cholesterol and

phospholipid contents in the lesion tissue [215]. There was a

positive correlation between cholesterol and phospholipid levels

and the size of the atherosclerotic lesion. Consequently, Cu levels

were inversely correlated with the levels of cholesterol or

phospholipid in the lesion. Importantly, treatment with Cu-

MB-US did not decrease the stability of atherosclerotic

plaques. Cu-MB-US significantly reduced apoptosis of

endothelial cells in the atherosclerotic lesion area. LOX

FIGURE 6
Reversal of atherosclerosis by restoring Cu homeostasis. Cu and albumin are prepared to make Cu-albumin microbubbles through ultrasonic
vibration, and then injected by intravenous infusion. Under high-energy ultrasound, the microbubbles are broken, and Cu enters the diseased
vascular tissue. After treatment with Cu-albumin microbubbles, the area of atherosclerotic plaques significantly decreases, Cu content in the
diseased tissue significantly increases, the lipid content significantly decreases, the apoptosis of endothelial cells is reduced, and the stability of
the plaque is not affected.
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activity and VSMC contents in the lesion were not altered after

the treatment. Cu repletion did not alter the collagen content or

the ratio of collagen I to collagen III in the lesion [138, 215].

In brief, it appears that Cu efflux from the atherosclerotic

lesion walls during the pathogenesis of atherosclerosis leads to Cu

deficiency in the injured vessel tissue and Cu elevation in the

circulation. These double injuries generated from Cu deficiency in

the affected organs and Cu overload in the circulation would not be

recovered by a simple dietary Cu supplementation. Therefore,

some confounding results from Cu supplementation on

atherosclerosis, particularly between animal studies and human

studies, would be explained at least partially by differential disease

stages at which Cu supplementation was administrated. In the

acute phase, Cu supplementation may show some beneficial

effects, but in the late phase of chronic development, it may

not be beneficial, or it may be adverse. It is thus reasonable to

observe the beneficial effect of target-specific Cu delivery to the

Cu-deficient lesion vessels, as reported recently [138, 215–217].

Challenges for the reversal of
atherosclerosis

Reversal of atherosclerosis is a new challenge in clinical practice.

Studies in the last two decades have shifted the focus of treatment for

atherosclerosis from on the cholesterol and thrombotic material

deposition in the arterial wall to on the multifactorial inflammatory

interactions. Based on the advanced understanding of the

pathogenesis of atherosclerosis, it should be recognized that

rejuvenating the self-repair mechanism of the vascular tissue is

an appealing approach for the treatment of atherosclerosis [218].

Recent studies have shown that in the early stages of atherosclerotic

lesions, the body has the ability to self-repair by removing the

deposited lipids and repairing the injured vasculature; this has been

demonstrated in many early clinical studies. However, as the

pathological microenvironment of the diseased vascular tissue

continues to deteriorate, the body gradually loses its self-repair

ability, and lipid metabolism pathways become imbalanced,

leading to further aggravation of the lesion and falling into a

vicious cycle. Along with this process, Cu homeostasis is

disturbed, further worsening the severity of atherosclerosis.

Restoring Cu homeostasis in the vessel wall may present a

feasible treatment strategy for reversing atherosclerosis. By

delivering Cu to the Cu-deficient lesion vascular tissue, it

effectively reduced the area of atherosclerotic plaques [215].

While this procedure has proved to be successful in animal

studies, its extrapolation to humans will face safety issues and

adaptation modifications.

The treatment time window of atherosclerosis is crucial. Some

patients can restore vascular health with exercise alone in the early

stages of the disease. Studies showed that once vascular tissue lesions

progress to foam cell formation and lipid stripes appearance, the

disease often progresses irreversibly [219]. Inflammation-induced

foam cell accumulation, cell apoptosis, necrosis, and subsequent

formation of necrotic cores further aggravate the inflammatory

response. Existing drug and surgical treatments are often applied

until the disease progresses to a specific late stage, which cannot

fundamentally change the progression of the disease. However,

implantation of early treatment would require the development of

new technologies instead of application of the existing technologies

in the early stage of the disease, demanding innovations.

Vascular tissue lesions are a manifestation of the imbalance

between organ injury and regeneration [220]. Treating only the

factors that cause damage to the vessels has been proven to have

limitations in the expected outcome. The development of future

technologies should focus more on the restoration of regenerative

capacity, including reversing the inflammatory phenotype of ECs

and promoting the efflux of lipids from the vascular wall, which

has already been carried out in many preclinical studies. From

the perspective of promoting the restoration of the injury-repair

mechanism and rebuilding the body’s autonomous regenerative

capacity, the development of earlier intervention treatment for

atherosclerosis would achieve better reversal treatment results.

This not only requires continuous breakthroughs in new

technologies but also requires a shift in the medicinal concept

from disease treatment to health rejuvenation. The reversal of

atherosclerosis is possible, but we have to face new challenges for

its fulfilment in the future.
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Abstract

Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat

with no curative options. In the past few decades, rapid advancements in our

understanding of SCI pathophysiology as well as the mergence of new

treatments has created more optimism. Focusing on clinical translation, this

paper provides a comprehensive overview of SCI through its epidemiology,

pathophysiology, currently employed management strategies, and emerging

therapeutic approaches. Additionally, it emphasizes the importance of

addressing the heavy quality of life (QoL) challenges faced by SCI patients

and their desires, providing a basis to tailor patient-centric forms of care.

Furthermore, this paper discusses the frequently encountered barriers in

translation from preclinical models to clinical settings. It also seeks to

summarize significant completed and ongoing SCI clinical trials focused on

neuroprotective and neuroregenerative strategies. While developing a cohesive

regenerative treatment strategy remains challenging, even modest

improvements in sensory and motor function can offer meaningful benefits

and motivation for patients coping with this highly debilitating condition.

KEYWORDS

spinal cord injury, neuroregeneration, animal models, clinical trials, pathophysiology

Impact statement

Despite advancements in medical, surgical, and rehabilitation management for

traumatic spinal cord injury (SCI), there remains a critical need for neuroprotective

and neuromodulatory treatment strategies. By providing an overview of the current state

of SCI understanding and management strategies, this paper aims to bridge the gap

between current therapeutic limitations and emergent treatments. It also examines the

challenges in treating and studying SCI due to the complexities in the heterogeneity of the

disease. Emphasizing the integration of patient feedback and emergent therapies, this

paper advocates for the development of tailored approaches that are crucial for advancing

SCI care and inclusivity. Ultimately, the goal is to provide insights and guidance that will
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enhance recovery and quality of life outcomes for SCI patients,

benefiting researchers, healthcare professionals, policymakers,

and caregivers alike.

Introduction

Traumatic spinal cord injury (SCI) remains a debilitating

condition, but over the past century rapid growth has been

made to uncover its pathophysiology and translate preclinical

research to patient care. This paper provides an overview of SCI

pathophysiology, epidemiology, currently employed

management strategies, and emerging therapeutic

approaches. It also highlights the quality of life (QoL)

challenges faced by patients as well as their desires,

providing a basis for caretakers to tailor more patient-centric

forms of care. This review underscores the heterogeneous

nature of SCI both in disease presentation and individual

patient needs, having profound effects on treatment

effectiveness. By delving into the wide range of strategies to

manage SCI, both established in the clinic and emerging

approaches, this paper examines their therapeutic potential

and limitations. Furthermore, this paper discusses the

frequently encountered barriers in translation from

preclinical models to clinical settings. Although the need

remains urgent for novel and effective SCI treatments, there

is great hope with the continued progress in the field aimed at

enhancing QoL and functional outcomes for patients.

Epidemiology

Of those that survive the initial injury, most will have

persisting neurological deficits [1]. Direct costs incurred by

SCI due to permanent disability are large, estimated to be

between 1.1 and 4.6 million USD per patient in the

United States [2]. The World Health Organization estimates

that 250,000 to 500,000 people suffer a new SCI each year [3] but

direct comparisons are shrouded by a lack of an international

standard for SCI reporting. Despite challenges surrounding SCI

reporting, commonalities can still be drawn from regionally

reported data. Within developed countries, SCIs are primarily

caused by motor vehicle accidents (MVAs), yet there is a shift

towards an increase in fall-related injuries [1, 4, 5]. For example,

in the United States, 38.1% of injuries were caused by MVAs

from 2010 to 2014, with falls as the close second cause

at 31.0% [6].

In regard to sex, males make up the highest distribution of

SCI at 79.8% as opposed to female SCI cases at 20.2% [6]. Within

the elderly population, this disparity between sex decreases as the

age at which SCI occurs in females tends to be later [7, 8].

Preclinical models for SCI assessing the role of gonadal

hormones do not have an established consensus [7].

Clinically, the higher incidence of male SCI as well as

disparities in the cause and types of injuries make sex-based

comparisons difficult.

With an aging global population, the average age of injury is

increasing from patients in their late 20s to those in their early 40s

[2]. This increase in age remains true for most causes of SCI, with

the exception of violence, as it predominantly occurs in younger

individuals (16–30 years of age) [6]. In comparison to younger

patients, individuals over 50 have greater rates of cervical injury

leading to paraplegia than their younger counterparts [9].

There are also variations in injury trends between countries,

predominantly related to economic status. Developing countries

primarily report falls as the leading cause of SCI, while MVAs

dominate SCI cases in wealthier nations [5, 10–12]. However,

there are exceptions to this trend. Prevention efforts have

reduced MVAs, work-related SCIs, and driving-related injuries

in high-income countries. Unfortunately, MVAs and work-

related SCIs remain significant issues in low and middle-

income countries. Advances in acute surgical, medical, and

rehabilitation care have disproportionately benefited high-

income countries [5, 10–12].

Despite its stronger economic position in the world, falls are

beginning to dominate the SCI landscape in Japan due to the

large elderly population [13]. Violence also contributes to a

greater proportion of SCI cases in developing regions [14].

Even within a nation, variations in urbanization, economic

status, and occupation have different outcomes [15].

Mortality and quality of life in patients with SCI have

improved but remain lower than in healthy, age-matched

controls in the global population [16]. In the first-year post-

injury, the mortality rate is close to 3.8%, followed by 1.2% the

next year and an increased rate of 1.2% per annum over the next

10 years [16]. The most significant indicators of mortality in the

time surrounding the injury are the severity of the SCI as well as

the level of the SCI and the age of the patient [16–18]. Major risks

that consistently place patients at higher long-term mortality

rates are a loss of autonomy as well as reduced social engagement

and support [19, 20].

Pathophysiology

SCI is a heterogeneous and multifaceted condition that

threatens the physical, social, and vocational well-being of

patients. It is one of the leading causes of paralysis worldwide

[1, 21]. SCI begins with an external mechanical trauma that

causes contusion and compression of the spinal cord (Figure 1).

This leads to the generation of toxic debris and disruption of

vasculature, which initiates the secondary injury cascade [22]. In

the acute phase (<48 h post-injury), inflammation is initiated

accompanying the activation of microglia into a

proinflammatory phenotype, which leads to glutamate

excitotoxicity and nitric oxide production [1, 23, 24].
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FIGURE 1
Timeline of the pathophysiological developments of spinal cord injury (SCI). (A) The initial mechanical forces that contribute to lesion formation
and necrosis, initiating SCI. (B) The acute phase of injury occurs following the initial injury. It is characterized by inflammation, ischemia, blood-spinal
cord barrier (BSCB) disruption, immune cell infiltration and recruitment, demyelination, as well as excitotoxicity. This leads to further damage of the
parenchyma beyond the initial lesion. (C) The subacute phase sees the recruitment of astrocytes from their quiescent state to reactive.

(Continued )
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Furthermore, blood-spinal cord barrier (BSCB) disruption,

hemorrhage, ischemia, as well as demyelination contribute to

greater neuronal and glial cell death [25, 26]. The subsequent

subacute phase (2–14 days post-injury) sees sustained

inflammation and ischemia as well as the recruitment of

resident astrocytes into reactive astrocytes [27, 28]. These

astrocytes have impaired glutamate reuptake contributing to

excitotoxicity, disrupted BSCB contact and maintenance, as

well as formed chondroitin sulfate proteoglycan (CSPGs)

deposits that disrupt regeneration [25]. Ependymal cells

undergo significant alterations after SCI. This involves

activating specific signaling pathways in the spinal cord that

promote self-renewal, proliferation, and differentiation. An

orchestrated regulation of receptor and ion channel expression

fine-tunes and coordinates the activation of ependymal cells after

SCI or cell transplantation [29]. While ependymal cells have been

proposed as adult neural stem cells, controversy remains as to

whether they provide a significant portion of scar-forming

astrocytes to protect tissue and function after SCI [30].

Infiltrating microglia is also a key cellular component in

orchestrating the glial scar that develops after SCI to protect

neural tissue [31].

Resident ependymal cells are recruited during this period and

form neural stem/progenitor cells (epNSPCs) that

predominantly differentiate into astrocytes [32, 33],

contributing to the upregulated population of reactive

astrocytes. In the intermediate (2 weeks-6 months post-injury)

and chronic phases of SCI (>6months post-injury), a fibrotic scar

core consisting of type A pericytes, abnormal neovasculature, and

CSPGs is formed within a reactive astrocyte encasing border [34].

Scarring, cystic cavity formation, as well as limited remyelination

and axon regrowth act in concert to greatly stunt recovery. This

causes devastating and often permanent neurological deficits

with complex barriers to treatment.

Targets for potential SCI treatment

BSCB disruption

The BSCB is a special structure within the spinal cord

parenchyma that mediates the exchange of compounds

between the blood and the parenchyma while maintaining a

regulated chemical balance and homeostasis crucial for neural

function [35–37]. Preserving the integrity of the BSCB may

enhance spinal cord repair and functional improvement,

therefore, the BSCB plays a role in the pathophysiology of SCI

progression [34–36].

Morphological and functional changes in the BSCB after SCI

include vascular changes, increased permeability of the BSCB,

edema, and cavity formation [38]. The initial mechanical

damage, combined with compression, laceration, and distraction,

contributes to disruption of the neurovascular system [35]. The

adverse environment then rapidly results in neuropil damage,

swollen neurovascular unit cells, and membrane structure

disruption [32, 36, 37]. The morphological alterations

accompanying BSCB disruption are instrumental in the

progression of SCI because the disrupted BSCB allows the

immune cells to enter the injured sites [35, 39, 40].

Lymphocytic infiltration mediates inflammation, reactive

astrogliosis, scar formation, and neutrophils leading to

demyelinating as well as neuroinflammatory events [39, 40].

The BSCB alterations following SCI lead to altered

permeability, which commences several minutes after injury,

persists for up to 4 weeks, and may extend over a longer

duration, often accompanied by cavity formation [41, 42]. In

addition, following SCI, edema begins within several minutes,

intensifies rapidly, and persists for up to 15 days, affecting both

the lesion site and adjacent segments [38, 39]. Progressive cavity

formation causes deficits in neurological function and

neuropathic pain [43–45].

Inflammation

Although inflammation serves as a vital defense mechanism

in removing pathogens, clearing debris, and facilitating wound

healing in the context of SCI, it also accentuates detrimental

effects [45, 46] Following SCI, the inflammatory response leads to

the production of toxic molecules which, instead of aiding in

healing, cause further damage on otherwise intact tissues. While

inflammation is required for repair, the response that follows SCI

is often exaggerated and leads to further damage and cell loss

[47]. Further adding to the complexity of SCI, the infiltration of

immune cells non-resident to the CNS (central nervous system)

also plays a critical role in inflammation and signaling molecules,

affecting the progression of the disease. These infiltrating

immune cells are guided by cytokines produced from

astrocytes, microglia, peripherally derived macrophages, and

endothelial cells [48, 49].

FIGURE 1 (Continued)
Astrocytes are also derived from resident ependymal cells through neural stem/progenitor cell (epNSPC) differentiation. Predominantly
epNSPCs differentiate into astrocytes, with few becoming oligodendrocytes and even less becoming neurons. The reactive astrocytes then
contribute to further disruption of the BSCB, reduced glutamate uptake involved in excitotoxicity, and chondroitin sulfate proteoglycan (CSPG)
deposition. Inflammation and ischemia also persist in this phase. (D) During intermediate and chronic phases of SCI, the reactive astrocyte
border and fibrotic scar is formed and consolidated. The fibrotic scar contains type A pericytes, abnormal vasculature growth, and CSPG deposits.
The scarring and cystic formation inhibits recovery. Created with Biorender.com.
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Following SCI, Microglia change their cellular morphology

and protein expression profiles [49–51]. Under normal

physiological conditions, microglia have long, thin processes

that extend from the central cell body to sample the

extracellular environment [50, 51]. After SCI, microglia retract

their processes and assume an amoeboid shape, primed for

phagocytosis and debris clearance [49–51]. In the first hours

after injury, microglia, astrocytes, and neurons synthesize pro-

inflammatory cytokines [49, 52]. Chemokines drive the increased

expression of selectins and cell adhesion proteins on endothelial

cells, facilitating integrin-mediated adhesion of circulating

immune cells and the subsequent leakage of monocytes and

neutrophils into the spinal cord [53, 54]. As the injury response

progresses, microglia proliferate extensively during the first

2 weeks, accumulating around the lesion site. These activated

microglia position themselves at the interface between infiltrating

leukocytes and astrocytes, orchestrating glial scar formation by

releasing factors such as IGF-1 [31].

Infiltrating macrophages provide proteolytic enzymes,

reactive oxygen species, and inflammatory cytokines to the

injury microenvironment but also perform the necessary

functions of debris clearance, cellular remodeling, and

producing pro-regenerative factors [55, 56]. Preclinical studies

have shown that while macrophages increase axon regeneration

and neuronal function, they can also worsen tissue destruction.

The dual beneficial and reparative functions of macrophages

make understanding their role in the injury response

difficult [55, 56].

Ischemia and hemorrhage

Mechanical damage from SCI leads to the disruption of

capillaries and the BSCB, which creates a harsh

microenvironment for spinal cord parenchyma [57]. A direct

rupture of the local capillaries induces bleeding into the

parenchyma of the spinal cord, which could cause increased

release of cytokines and chemokines from macrophages,

microglia, and astrocytes into the extracellular space [57]. The

presence of red blood cells in the parenchyma is likely to induce

free radicals and consequently lead to edema [58, 59]. On the

contrary, neural tissue edema can also increase interstitial

pressure, which presses the neighboring vessels and causes

ischemia [60]. The lack of adenosine triphosphate caused by

ischemia and ion channel defects results in an ion

imbalance [60, 61].

Demyelination and re-myelination

Oligodendrocytes oversee the generation and maintenance of

myelin segments, which is crucial to maintaining the integrity of

axons and eases axon signal conduction [62, 63]. After SCI,

mechanical damage and the imbalance of local microenvironment

factors leads to demyelination [64, 65]. The apoptosis of

oligodendrocytes is potentially the leading cause of axonal

demyelination [64, 65]. The level of oligodendrocyte apoptosis at

the epicenter of the lesion peaks within a week of the injury; however,

uninjured axons around the lesion remain myelinated [64, 65]. The

presence of myelin debris inhibits remyelination, thus the extent and

quality of remyelination are limited [66].

Mechanical injury, ischemia, inflammatory cytokines,

oxidative stress, excitotoxicity, and autophagy can cause the

death of oligodendrocytes because of demyelination and

remyelination imbalance [67–69]. Molecules involved in

demyelination are potential inhibitors of axon regeneration,

thus the process of demyelination inhibits the regeneration of

axons [67–69].

Following a SCI, remyelination mainly involves replacing

oligodendrocytes, with the primary source of these new cells

being progenitor oligodendrocytes and endogenous neural stem

cells [67]. Endogenous neural stem cells remain inactive in

normal conditions and become activated upon spinal cord

damage; these cells mainly differentiate into astrocytes and to

a lesser degree into oligodendrocytes [67, 70]. This suppression of

differentiation into oligodendrocytes is mainly due to the lack of

growth factors that switch the balance toward differentiation into

oligodendrocytes [67, 70].

Hyperexcitation (switch from
KCC2 to NKCC1)

NKCC1 and KCC2 are members of the SLC12 cation-

chloride co-transporter (CCC) family, which participate in

physiological and pathophysiological processes by regulating

intracellular and extracellular chloride concentrations, and in

turn the GABAergic system [71, 72]. NKCC1 transports Cl− into

cells while KCC2 transports Cl− out of cells, thereby regulating

chloride balance and neuronal excitability. An imbalance of

NKCC1 and KCC2 after SCI will disrupt CI− homeostasis,

resulting in the transformation of GABA neurons from an

inhibitory to an excitatory state, which leads to abnormal

conditions such as spasticity and neuropathic pain [73–75].

After SCI, the segment below the injury site presents a state

similar to upregulation of NKCC1 seen in the early stages of

development [75]; therefore, the expression of KCC2 was

reported to be downregulated at the injury site, followed by a

transient upregulation of NKCC1 expression levels, and this

altered expression trend was consistent with the post-

neuropathic pain occurrence [76].

Inflammation or injury can inhibit the expression and

function of KCC2 in the dorsal horn and advance the

development of neuropathic pain [77, 78]. GABAA receptors

(GABAARs) are involved in the regulation of tonic inhibition in

the dorsal horn, sustaining the relative balance of inhibition and
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excitation in the central nervous system [79]. After SCI, the

function of GABAARs changes and their activation can cause a

depolarizing shift as well as the disclosure of nociceptive

sensitization [80]. Therefore, improving the abnormal Cl−

concentration gradient in the dorsal horn through targeting

KCC2 and NKCC1 represents a promising therapeutic direction

for restoring the inhibitory function of the GABAergic system and

relieving or improving neuropathic pain [81–83]. Moreover,

disruption of Cl− homeostasis after SCI, especially the

downregulation of KCC2 in motor neurons, depolarizes the Cl−

equilibrium potential and decreases the strength of postsynaptic

inhibition [74].

Numerous studies have confirmed the therapeutic effect of

NKCC1 and KCC2 in neuropathic pain, spasticity, and motor

functional recovery post SCI, and these co-transporters are

expected to become key targets in future SCI treatments [74,

84]. However, KCC2 and NKCC1 are distributed throughout the

nervous system and methods to achieve localization, orientation,

and quantitative regulation of their levels may be the main

obstacle to their clinical application in the treatment of SCI.

Patient-centric approaches

The concept of patient-centered care (PCC) is crucial for

bridging the gap between patients’ desires and what healthcare

professionals consider beneficial for patients. Gerteis et al.

identified that patients defined PCC as having the following

dimensions: 1) respect for patient’s values, preferences and

expressed needs; 2) coordination of care and integration of

services within an institutional setting; 3) communication

between the patient and providers; 4) dissemination of

accurate, timely and appropriate information; 5) education

about the long-term implications of disease and illness; 6)

physical care, comfort and the alleviation of pain; 7)

emotional support and alleviation of fears and anxiety; 8)

involvement of family and friends; and 9) transition and

continuity from one locus of care to another [85]. This

section will delve into specific dimensions of PCC relevant to

patients with SCI, with a focus on translational perspectives.

Respect for patients’ desires

Healthcare professionals generally strive to provide the best

treatment for patients with SCI in accordance with clinical practice

guidelines [86]. However, therapeutic strategies for SCI do not

always align with patient satisfaction. According to a qualitative

study on decision-making regarding bladder drainage methods

after SCI, conducted by Engkasan et al., some patients felt that they

were forced to accept their doctor’s decision [87]. Additionally,

Scheel-Sailer et al. reported in their qualitative interview-based

study that patients with SCI often experience difficulties making

decisions during the initial rehabilitation phase due to physical,

psychological, and environmental factors [88]. Thus, it appears

that patients’ opportunities for decision-making in therapeutic

strategies for SCI might be limited in certain contexts.

Importantly, patients’ treatment preferences might differ

from the actual treatments, potentially undermining respect

for their desires. Bowers et al. conducted a survey to clarify

SCI patients’ preferences regarding methylprednisolone sodium

succinate (MPSS) treatment for acute SCI and found that most

SCI patients considered MPSS treatment important, even if it

offered only minor neurological benefits and carried a risk of

complications [89]. However, the 24-hour administration of

high-dose MPSS to adult patients within 8 h of SCI is still

controversial, with only a weak recommendation in the

2017 AO Spine Clinical Practice Guidelines [86]; therefore,

not all patients wishing to receive this treatment may be able

to, depending on the physicians’ decision.

Looking forward, as novel therapeutic strategies for SCI emerge,

they will initially lack robust evidence to guide evidence-based

decision-making. In such situations, it will be important for

physicians to respect patient’s desires and provide them with

opportunities to make decisions about their treatments.

Accessibility of information

Patients with SCI have a keen interest in health-related

information; hence, the accessibility of such information is

crucial for them [90]. According to the interest assessment

survey performed by Edwards et al. in the early 2000s, 64% of

Canadian chronic SCI patients reported using the Internet to obtain

research information [91]. In a more recent 2020 study by Farrehi

et al., 89% of participants with SCI in the United States reported

sourcing information about experimental therapies online [92]. This

trend suggests that access to medical information, including

emerging therapies, will continue to grow in the future. However,

SCI patients tend to deem information from SCI specialists as more

reliable [92]. Therefore, it is equally important to enhance

accessibility to SCI specialists, and there are opportunities to

leverage emerging areas, such as Telemedicine, to improve access

for patients in rural areas [93].

Moreover, improving accessibility for research information

also benefits researchers by aiding in the recruitment of

participants for clinical trials, as individuals with SCI are

willing to participate in translational research [94].

Enhancing quality of life for patients

Among the various neurological symptoms experienced after

SCI, pain is the most prevalent issue of SCI as highlighted by

patient feedback, followed by bowel and bladder dysfunction,

spasticity, and sexual dysfunction [95, 96]. It significantly affects
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patients’ quality of life by interfering with sleep and daily

activities [95]. A survey by Jensen et al. found that pain was

both the most common (experienced by 84% of individuals) and

the most severe symptom among participants [96]. According to

a meta-analysis regarding the prevalence of neuropathic pain

following SCI, the pooled point prevalence rate was 53% [97].

However, a postal survey by Finnerup et al. indicated that only a

small number of patients received treatment with antidepressants

or anticonvulsants, which are considered to be most effective for

neuropathic pain [98]. This suggests that there is significant

potential for enhancing the quality of life in SCI patients.

In preclinical studies, behavioral assessment tests for sensory

function are less commonly utilized than those for motor

function. A systematic review regarding animal models of SCI

showed that sensory tests, such as the von Frey filament test, were

used in only 16.3% of studies, compared to 89.2% for locomotor

tests [99]. This discrepancy might be due to most researchers

focusing primarily on motor function. However, considering the

clinical application and the impact on patients’ quality of life,

there may be merit in the inclusion of sensory assessment as well

as locomotor assessment.

Currently employed strategies in the
management of SCI

Early surgical decompression

Surgical decompression of the spinal cord within the first 24 h

after injury limits tissue damage by restoring compromised blood

flow and reducing the extent of ischemia-related secondary injuries.

A recent pooled analysis to evaluate the efficacy of early

decompressive surgery for SCI demonstrated that the American

Spinal Injury Association (ASIA) motor score in the early (within

24 h of SCI) surgery group was significantly higher than that in the

late (after 24 h of SCI) surgery group (23.7 points vs. 19.7 points; p =

0.0006) at 1 year after injury [100]. According to the latest meta-

analysis regarding timing of decompressive surgery for acute SCI,

patients were 2 times more likely to recover by ≥2 grades on the

ASIA Impairment Score at 6months and 1 year after SCI (risk ratios:

2.76 [95% CI: 1.60–4.98] and 1.95 [95% CI: 1.26–3.18]) if they

underwent decompressive surgery within 24 h after injury [101].

Based on this evidence, the recommendation for early surgical

decompression (within 24 h after SCI) was upgraded in the

recently published AO Spine-Praxis Clinical Practice Guidelines

from “Quality of Evidence: Low; Strength of Recommendation:

Weak” in 2017 [86] to “Quality of Evidence: Moderate; Strength

of Recommendation: Strong” in 2024 [101]. Although the evidence

has become stronger, early surgical decompression for acute SCI

remains a significant challenge in low- andmiddle-income countries

due to limited logistical and infrastructural resources [102].

As for ultra-early surgical interventions (within 4, 5, 8, and

12 h after SCI), it is difficult to draw firm conclusions on their

efficacies compared to early surgical decompression, due to the

inconsistency in results observed so far [101]. Just as the evidence

for early surgical decompression has been established, the

evidence for ultra-early surgical intervention is expected to be

solidified as more clinical findings become available.

Recently, a phase III RCT, Duroplasty for Injured Cervical

Spinal Cord with Uncontrolled Swelling (DISCUS)

(NCT04936620), was initiated. This ongoing trial compares

laminectomy with duroplasty to laminectomy alone for

treating acute cervical SCI. It is expected to reveal the optimal

surgical procedure for acute SCI in the near future.

Blood pressure augmentation

Hemodynamic management following acute SCI is crucial, as

ischemia and hypoperfusion can exacerbate secondary injury. Pre-

clinical research has indicated that maintaining arterial pressure

can improve spinal cord blood flow and, consequently,

electrophysiological function [103, 104]. Accordingly, the

2013 guidelines from the American Association of

Neurosurgical Surgeons (AANS) and the Congress of

Neurological Surgeons recommended maintaining a mean

arterial pressure (MAP) of 85–90 mmHg for the first 7 days

post-SCI [105]. However, considering the strict MAP target

range of 5 mmHg and newer literatures since the 2013 AANS/

Congress of Neurological Surgeons guidelines, the 2024 AO Spine

Guideline now recommends that MAP should be maintained

between 75 and 80 mmHg as a lower limit and not exceed

90–95 mmHg at the higher range during the first 3–7 days

post-SCI [106]. A phase III, randomized, controlled trial (RCT),

the Randomized Trial of Early Hemodynamic Management of

Patients Following Acute Spinal Cord Injury (TEMPLE)

(NCT02232165), was initiated in 2017. This ongoing trial aims

to compare augmented blood pressure management (targeting

MAP of 85–90 mmHg) with conventional management

(65–70 mmHg), and may provide additional evidence on the

benefit of blood pressure augmentation for acute SCI.

Additionally, spinal cord perfusion pressure (SCPP), which

has recently emerged as a more relevant parameter to predict

functional outcomes as compared toMAP, is recommended to be

maintained above 50 mmHg [107]. It is anticipated that the

ongoing Canadian-American Spinal Cord Perfusion Pressure

and Biomarker Study (CASPER) (NCT03911492) will soon

provide further evidence to support this approach.

Methylprednisolone sodium
succinate (MPSS)

MPSS is a corticosteroid that inhibits lipid peroxidation of

the neuronal membrane and prevents secondary damage of SCI

[108]. The National Acute SCI Study (NASCIS) trials were

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine07

Hassan et al. 10.3389/ebm.2024.10266

36

https://doi.org/10.3389/ebm.2024.10266


representative trials of MPSS for SCI. In the NASCIS-2 trial, the

primary analysis did not show significant motor recovery in the

MPSS group; however, secondary analyses demonstrated that

patients who had received high-dose MPSS within 8 h post-SCI

improved motor scores compared to the control group at

6 months post-SCI (16.0 points vs. 11.2 points; p = 0.033)

[109]. Additionally, the NASCIS-3 trial suggested that patients

who receivedMPSS within 3 h post-SCI should be maintained on

the 24-hour treatment regimen, whereas those who received

3–8 h after SCI should be maintained on the 48-hour therapy

[110]. Although there are some controversies from a perspective

of complications [111], the side effects of steroids are much less

relevant in modern times with improved general medical care

and the avoidance of steroids in medically compromised

individuals. Currently, a 24-hour infusion of high-dose MPSS

should be offered to adult patients with acute SCI (<8 h post-

injury) as a treatment option [86].

Challenges in translation

Generally, the process from technology initiation to FDA

approval in translational science takes a considerable amount of

time. McNamee et al. reported that the median interval from

technology initiation to establishment was 25 years, to the start of

clinical trials was 29 years, and to the first FDA approval was

36 years among new molecular entities approved by FDA

between 2010 and 2014 [112]. Broadly, clinical and

translational research encompasses the following five phases:

T0, basic research (pre-clinical research); T1, translating basic

research to humans (phase I clinical trials); T2, translating

findings to patients (phase II/III clinical trials); T3, translating

research to general practice care (phase IV clinical trials); and T4,

translating research to populations or communities [113]. This

section will focus on animal models for phase T0, highlight key

clinical trials for phase T1–2, and examples of advanced

translation.

Animal models and clinical relevance

In translational research, multiple animal models should be

used to verify the effectiveness of potential treatments and

establish proof of concept. Utilizing a variety of models

enhances the robustness and translatability of the research

findings [114]. When considering differences among

preclinical SCI models, it is important to note the animal

species, injury mechanisms, and injured level.

Animal species
Rodent models are the predominant model in SCI research.

Rats are most commonly used (72.4%) in SCI preclinical research,

followed by mice at 16% [99]. Rodent models also have distinct

phases of SCI pathophysiology that are clinically relevant and,

given their rapid reproduction cycle and small size, can allow for

greater sample sizes. This is especially useful in drug studies where

multiple groups are needed to test a range of dosages for safety and

efficacy. The preference for rat models is due to their long-term

usage as a robust and reliable model for assessing even incremental

improvements [115]. Immunodeficient rats that lack T-cell

presence have allowed for cell transplantation therapy

experiments without the risk of host-vs-graft disease. As an

example, human pluripotent stem cell lines have been applied

in these models with success [116]. The main caveat to this model,

however, is that immunosuppression of SCI patients to allow for

transplantation would be through immunosuppressant drugs

rather than genetic alterations. This hinders translatability but

also reduces variability from the many possible tailored

immunosuppressant regimes. For more extensive genetically

modified animal research, mouse models are utilized due to

their widespread usage in knockout studies. Immunodeficient

mice with engrafted human hematopoietic stem cells have

shown promise as a translatable model for human immune

responses after SCI [117]. However, they are less resilient to SCI

induction with higher mortality rates and have species-specific

timelines in SCI less reflective of human patient timelines. Where

rats have T-cell infiltration peak at 3–7 days post-injury, closer to

the human timeline of 7–9 days post injury [49], mice do not have

significant T-cell infiltration until after 14 days post injury [49].

Despite the advantages of rodent models, there is a need for

large animal and non-human primate models from a

translational perspective [118, 119]. When comparing SCI in

rodents and humans, functional recovery after injury in rodent

models tends to be much faster compared to humans, which

seems to be associated with various neural pathways. For

example, the rubrospinal tract has been reported as an

alternative pathway to improve motor function after

corticospinal tract injury in rodent models, which is not

observed in humans [120, 121]. Moreover, the size of the

spinal cord and its surrounding environment, including the

cerebrospinal fluid, differ considerably in rodents, potentially

affecting the distribution of locally delivered therapies [122]. This

holds especially true for the development of surgical

interventions, which are limited when applied to the small

stature of rodent models. By examining both rodent and large

preclinical animal models, more robust findings can be obtained

prior to clinical trials. To date, various large animal SCI models

have been utilized, including those involving pigs [123], dogs

[124], cats [125], and monkeys [126].

Injury mechanisms
Based on the mechanisms of injury, SCI models can be

classified as contusion, transection, compression, and

distraction/dislocation models. Contusion models are the most

commonly used (43.4%), followed by transection (34.4%) and

compression models (20.5%) [99].
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Contusion models are created using weight-drop apparatuses

or electromagnetic impactors, such as the New York University

impactor [127] and the infinite horizon impactor [128].

Compression models are generated by compression using a

modified aneurysmal clip [129], forceps [130], or balloon

[131]. Both contusion and compression models effectively

reflect the pathophysiology of SCI; in particular, clip

contusion models not only cause compression but also

contusion and hypoperfusion, closely mimicking clinical

situations [118]. Transection models, which include complete

and partial transection, are advantageous for investigating axonal

regeneration following SCI. However, they do not fully represent

the complex pathophysiology of SCI, as the spinal cord is seldom

sharply transected in clinical settings [118].

Injured levels
Although approximately 60% of SCIs occur at the cervical

level [132], only 12% of preclinical research studies have utilized

cervical models, with themajority (over 80%) employing thoracic

SCI models [99]. This discrepancy may stem from the challenge

of postoperative care in cervical SCI models, including manual

bladder expression and feeding as well as daily fluid

administration, which is necessary to maintain low mortality

rates [133]. While challenging to implement, it is essential to

validate therapeutic effects in cervical models, as the

pathophysiology of cervical SCI differs from that of thoracic

SCI due to anatomical and physiological variations [134].

Even though the animal models can be sophisticated from a

clinical relevance perspective, a large gap between preclinical

studies and early-phase clinical trials remains due to issues of

poor validity and reproducibility, often caused by improper study

designs. The lack of alignment in design between basic research

and clinical trials, including the dosage of drugs and timing of

administration, makes it difficult to predict the effectiveness of

novel therapies in human trials [135]. To maximize clinical

translation, we should refine study designs as well as using

clinically relevant animal models.

Regenerative strategies
under research

Stem cells and associated growth factors

Endogenous stem cells
Cellular replacement strategies are necessary to restore

disrupted neural signaling pathways following the extensive

parenchyma loss after SCI. Oligodendrocyte progenitor cells

(OPCs) are the majority of progenitor cells that proliferate

and differentiate in response to SCI [136]. OPCs are

unipotent and neural stem/progenitor cells (NSPCs) are fewer,

underlying the spinal cord’s limited neurogenic potential [137].

Of the NSPCs, the largest population responding to SCI are

ependymal derived neural/stem progenitor cells (epNSPCs) in

the spinal canal. They display multipotent properties and are

capable of self-renewal, responding to SCI in the acute phase

through proliferation and migration to the site of injury.

Although they have been shown in vitro to have the capability

to differentiate into neurons, astrocytes, and oligodendrocytes, in

vivo studies have displayed them to be particularly biased

towards an astrocytic fate post-SCI, with a small potential for

becoming oligodendrocytes and an even lower potential to form

neurons [137, 138].

Strategies to bias epNSPCs towards neuronal cell fates are

emerging. Bioartificial scaffoldings to bias NSPCs towards

neuronal cells such as those developed by Zhang et al. [139]

have been shown to facilitate neural stem cells to differentiate

into neuron-like cells. As an alternative approach, biasing

through changes to the microenvironment has also been

displayed. Ohori et al. [140] injected fibroblast growth factor

2 and epidermal growth factor within the lesion site in a rat SCI

model to promote immature markers of neuronal cells in NSPCs.

As a caveat, they used NSPCs that were genetically manipulated

by a retrovirus, pMXIG, to express Neurogenin2 (NGN2) and

Mash1, transcription factors that bias towards neurons and

oligodendrocytes.

Induced pluripotent stem cells
Induced pluripotent stem cells (IPSCs) can be biased as

neural progenitor cells (NPCs) for transplantation and

integration into the spared parenchyma to enhance local

circuits and aid in motor recovery [141]. These cells can be

made in an autologous fashion from fibroblasts, circumventing

the need for immunosuppressants when using exogenous cells as

well as the ethical concerns of their origins. Fibroblasts are

exposed to the factors Oct4, Sox2, Klf2, and c-Myc in

accordance with the work done by Yamanaka and Takahashi

on mice in 2006 [142] and in human fibroblasts by Takahashi

et al. in 2007 [143]. This comes at the cost of time, however, for

the development and biasing of IPSCs, limiting their application

to later stages of injury.

Generating IPSCs also comes with added risks, particularly

related to tumorigenicity. When generating the IPSCs, residual

undifferentiated cells can proliferate and form tumors [144], thus

emphasizing the need for stringent quality control.

One of the factors used to generate IPSCs from fibroblasts,

c-Myc, is protooncogenic and often overexpressed in a majority of

human cancers, contributing to over 40% of tumor formations [145,

146]. Retroviral c-Myc introduction has also shown an increased

tumorigenicity in mouse models [147]. Clinically this carries a large

risk. Using alternative factors reduces the efficiency and speed of

IPSC induction but makes the IPSCs clinically acceptable [148].

The first IPSCs generated by Yamanaka and Takahashi

through retrovirus transduction resulted in random

integration [142, 143] at start sequences with increased

likelihoods of loss of function effects [149]. Alternative
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strategies have arisen with lowered tumorigenicity. Sendai and

adeno-associated viruses, as well as plasmid integration, have

been used to potentially lower teratogenicity but are highly

inefficient [150–152]. Sustained delivery of synthetic mRNA

that encodes for the reprogramming factors used by

Yamanka’s group are more efficient and avoid the heritable

tumorigenicity of cellular DNA modification [153, 154].

Direct reprogramming of adult somatic cells without viral

vectors through the transient expression of Msi1, Ngn2, and

MBD2 by Ahlfors et al. has shown high reprogramming

efficiency, no tumorgenicity in murine models, and low-cost

[155]. It remains hopeful for clinical application.

Overview of current significant
clinical trials

In the currently employed therapies for SCI, there are not

enough neuroprotective and neuro regenerative approaches. To

address this issue, numerous clinical trials have been performed. In

this section, we provide an overview of clinical trials examining

neuroprotective (Table 1), regenerative (Table 2), and other

strategies for SCI.

Neuroprotective therapy

Minocycline
Minocycline is a tetracycline antibiotic used clinically as an

antimicrobial agent. It also exhibits anti-apoptotic characteristics

through the inhibition of caspase-1 and –3 [160, 161]. A phase II

RCT (NCT00559494) conducted from 2004 to

2008 demonstrated safety and a trend toward motor function

improvement, as measured by the ASIA motor score, in cervical

SCI patients treated with minocycline (14 points; 95% CI: 0–28;

p = 0.05) [156]. Based on these promising results, a phase III

RCT, Minocycline in Acute Spinal Cord Injury (MACS)

(NCT01828203), was initiated in 2013. However, this trial was

discontinued, and its results have not yet been published.

Granulocyte colony stimulating factor (G-CSF)
G-CSF, known as a growth factor for hematopoietic cells, has

also demonstrated neuroprotective characteristics for SCI

through angiogenesis, inflammation suppression, and

apoptosis inhibition in preclinical research [162–164]. An

open-label phase I/IIa trial of G-CSF for acute SCI conducted

from 2008 to 2010 revealed no severe adverse events related to

G-CSF administration [165]. Another open-label, non-

randomized controlled phase II trial carried out between

2009 and 2011 by the same group found a significantly

greater improvement in the ASIA motor score in the G-CSF

group compared to the control group [166]. Encouraged by these

promising results, a phase III RCT, the G-CSF mediated spinal

cord injury recovery induction trial (G-SPIRIT)

(UMIN000018752), was initiated in 2015. Although this trial

reported no significant differences in the primary efficacy

endpoint, measured by changes in the ASIA motor score at

3 months post-intervention between the G-CSF and control

groups, those at 6 and 12 months showed a trend towards

better improvement in the G-CSF group [158].

TABLE 1 Summary of leading completed and ongoing clinical trials regarding neuroprotective therapies for spinal cord injury.

Drug Treatment
Type

Study
design

Study
period

Stage
of SCI

Sample
size

Outcome References

Minocycline Anti-apoptosis Phase II,
RCT

2004–2008 Acute
(<12 h
of SCI)

52 A trend toward motor improvement in
cervical SCI patients treated with minocycline

was observed
No significant difference in motor function in

thoracic SCI patients treated with
minocycline was observed

Casha
et al. [156]

Riluzole Anti-excitotoxicity Phase IIb/
III,
RCT

2014–2021 Acute
(<12 h
of SCI)

193 All subgroups of cervical SCI patients treated
with riluzole showed significant gains in

functional recovery on the post hoc analyses

Fehlings
et al. [157]

G-CSF Anti-apoptosis, anti-
inflammation

Phase III,
RCT

2015–2019 Acute
(<48 h
of SCI)

88 A trend toward motor improvement in the
G-CSF group was observed

Koda
et al. [158]

KP-
100 (HGF)

Anti-apoptosis, cell
growth

Phase I/II,
RCT

2014–2018 Acute
(2–5 days
post-SCI)

43 KP-100 contributed to motor improvement Nagoshi
et al. [159]

Phase III,
open-label,
single-arm

2020–2023 Acute
(<72 h
of SCI)

25 not published yet NCT04475224

Abbreviations: SCI, spinal cord injury; RCT, randomized controlled trial; G-CSF, granulocyte colony-stimulating factor; HGF, hepatocyte growth factor.
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TABLE 2 Summary of leading completed and ongoing clinical trials regarding regenerative therapies for spinal cord injury.

Cell-based approach

Cell type Treatment type Study
design

Study
period

Stage of SCI Sample
size

Outcome References

NP/PCs Anti-apoptosis, anti-
inflammation (acute

phase)
Remyelination,
axonal regrowth

(chronic)

Phase I/IIa,
open-label,
single-arm

2021– (ongoing) Subacute
(7–60 days
post-SCI)

5
(estimated)

Not completed yet NCT04812431

Phase I,
open-label,
single-arm

2020– (ongoing) Subacute
(14–28 days
post-SCI)

4
(estimated)

Not completed yet jRCTa031190228

OPCs Anti-apoptosis, anti-
inflammation (acute

phase)
remyelination,
axonal regrowth

(chronic)

Phase I/IIa,
open-label,
single-arm

2015–2018 Subacute
(21–42 days
post-SCI)

25 Two grade 3 serious
adverse events (CSF
leakage and bacterial

infection) were observed
24/25 participants

experienced functional
recovery

Fessler
et al. [168]

MSCs Bone
marrow-
derived

Anti-apoptosis, anti-
inflammation (acute

phase)
remyelination,
axonal regrowth

(chronic)

Phase II,
open-label,
single-arm

2014–2017 Subacute
(26–54 days
post-SCI)

13 No serious adverse events
were observed

12/13 participants
experienced functional

recovery

Honmou
et al. [169]

Phase II/III,
RCT,

delayed-
start

2022– (ongoing) subacute
(6–10 weeks
post-SCI)

16
(estimated)

Not completed yet NCT03935724

Umbilical
cord-derived

Phase I/II,
RCT

2022– (ongoing) Acute (<7 days
post-SCI)

80
(estimated)

Not completed yet NCT05693181

Adipose
tissue-
derived

Phase I,
open-label,
single-arm

2017–2021 chronic
(2–12 months
post-SCI)

10 No serious adverse events
were observed

7/10 participants
experienced functional

recovery

Bydon et al. [170]

Muse cells Phase II,
open-label,
single-arm

2019–2023 Subacute
(<2 weeks
post-SCI)

10 Not published yet jRCT1080224764

Non-cell-based approach

Drug Treatment
Type

Study
Design

Study
Period

Stage of SCI Sample
Size

Outcome References

C3 transferase Axonal growth,
regeneration

Phase IIb/
III,
RCT

2016–2018 Acute (<72 h
of SCI)

67 No significant difference in
motor function in the
cethrin group was

observed

Fehlings
et al. [171]

Anti-Nogo-A
antibody

Axonal growth,
regeneration

Phase II,
RCT

2019–2023 Acute (4–28 days
post-SCI)

129 Not published yet NCT03935321

Endothelin B receptor
agonist

Anti-apoptosis,
enhances neuronal
differentiation

Phase II,
RCT

2019– (ongoing) Acute (<48 h
of SCI)

40
(estimated)

Not completed yet NCT04054414

Anti-RGMa antibody Axonal growth,
regeneration

Phase II,
RCT

2020– (ongoing) Acute (<24 h
of SCI)

54
(estimated)

Not completed yet NCT04295538

Phase II,
RCT

2021– (ongoing) Acute 72
(estimated)

Not completed yet NCT04683848

Abbreviations: SCI, spinal cord injury; RCT, randomized controlled trial; NP/PCs, neural stem/progenitor cells; OPCs, oligodendrocyte progenitor cells; CSF, cerebrospinal fluid; MSCs,

mesenchymal stem cells; RGMa, repulsive guidance molecule A.
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Hepatocyte growth factor
Hepatocyte growth factor (HGF) is secreted by mesenchymal

stem cells and regulates cell growth and cell motility by activating

a tyrosine kinase signaling cascade through binding to the c-Met

receptor. In preclinical research using primate models, HGF

enhanced motor neuron survival and reduced cavitation at the

injured site [167]. A phase I/II RCT using recombinant human

HGF (KP-100IT) for acute SCI (NCT02193334) was conducted

starting in 2014. It demonstrated safety and suggested

improvements in motor function as evaluated by the ASIA

motor score [159]. Based on these results, an open-label,

single-arm phase III trial (NCT04475224) was conducted.

However, it appears not to have achieved its primary efficacy

endpoints, potentially influenced by variations in patients’

baselines due to the COVID-19 pandemic. Detailed results,

including any post hoc analyses, are to be published in the

near future.

Regenerative therapy (Table 2)

Cell-based therapy
Cell-based therapies are a promising strategy for the

treatment of SCI, offering a variety of therapeutic

mechanisms. Supported by substantial pre-clinical evidence,

numerous clinical trials have been conducted.

Neural stem/progenitor cells (NS/PCs)

NS/PCs, capable of self-renewal and differentiating into

neurons and glial cells, have been utilized in several clinical

trials. Two clinical trials include an open-label phase I/II trial for

chronic thoracic SCI (NCT01321333) and a single-blinded phase

II RCT for chronic cervical SCI (NCT02163876), where human

fetal brain-derived NS/PCs were transplanted into the spinal cord

around the epicenter. These trials indicated no serious adverse

events related to the intramedullary injection or additional spinal

cord damage; however, they failed to demonstrate the efficacy

anticipated by the sponsor [172–174]. Another open-label,

single-arm phase I trial with the intramedullary

transplantation of human spinal cord-derived NS/PCs for

chronic thoracic SCI (NCT01772810) began in 2014, with 5-

year follow-up results recently reported. According to this report,

no serious adverse events were directly attributed to cell

transplantation [175]. Currently, there are ongoing clinical

trials using human embryonic stem cell (ESC)-derived NS/PCs

and human induced pluripotent stem cell (iPSC)-derived NS/

PCs. An open-label, single-arm phase I/IIa trial with human

ESC-derived NS/PCs (NCT04812431) is targeting subacute

cervical SCI and is estimated to be completed by 2028.

Another open-label, single-arm phase I trial using human

iPSC-derived NS/PCs (UMIN000035074, jRCTa031190228) is

targeting subacute cervical or thoracic SCI [176]. This trial is

expected to be completed by 2024 and aims to address ethical

concerns associated with deriving NS/PCs from human ESC

or fetuses.

Oligodendrocyte progenitor cells (OPCs)

OPCs are also self-renewing, multipotent cells that

preferentially differentiate into oligodendrocytes, as opposed

to NS/PCs. Preclinical studies have demonstrated their

capability to secrete neurotrophic factors, suppress

inflammation, remyelinate axons, and spare tissues [177–180].

An open-label, single-arm phase I trial (NCT01217008) was

conducted from 2010 to 2013, involving the direct

transplantation of OPCs into the injured epicenter in patients

with subacute thoracic SCI. This study confirmed their safety for

up to 10 years post-SCI [181]. Based on this safety profile, an

open-label, single-arm phase I/IIa trial for subacute cervical SCI

(NCT02302157) took place from 2015 to 2018. Results from this

trial indicated not only the safety of OPCs but also functional

improvements as assessed by the International Standards for

Neurological Classification of Spinal Cord Injury examination at

1-year post-SCI [168]. Consequently, a phase III trial to confirm

their efficacy is now warranted.

Schwann cells (SCs)

SCs have shown the ability to promote remyelination,

improve axonal sparing, and reduce the inflammatory

response in preclinical studies [182–184]. Two open-label,

single-arm phase I trials of SCs for SCI have been conducted

by the Miami Project to Cure Paralysis. The first one

(NCT01739023) was performed between 2012 and 2015 and

enrolled six patients with subacute thoracic SCI [185]. Another

trial (NCT02354625) was conducted from 2015 to 2019 and

enrolled six patients with chronic (more than 1 year) thoracic SCI

[186]. In both trials, SCs were harvested from the sural nerve of

the participants, and autologously transplanted into the epicenter

of SCI, with no serious adverse events being reported. However,

no evidence of its efficacy has been reported to date.

Mesenchymal stem cells (MSCs)

MSCs can exert immunomodulatory, anti-inflammatory,

neuroprotective, and angiogenic effects by secreting numerous

trophic factors [187], This secretion improves the local

environment of the injured spinal cord. Due to their ability to

migrate to the injured lesion [188], MSCs can be transplanted

directly into the injured site or via intravenous injection, offering

a less invasive option for patients.

MSCs can be derived from multiple sources, including bone

marrow (BM), umbilical cord (UC), adipose tissue (AD),

Wharton’s jelly, and amnion. Their efficacy has been

demonstrated in several preclinical studies [189–193]. Based

on these sources, numerous clinical trials have been

conducted. For instance, autologous BM-MSCs were

intravenously injected in an open-label, single-arm phase II

trial for subacute cervical SCI (JMA-IIA00154). This trial
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reported no serious adverse events related to the cell injection

and showed neurological improvement [169]. Based on the

results, the MSC product (Stemirac®) has been approved

through the conditional early approval program in Japan,

although further evaluations are required to determine its

efficacy. Additionally, a double-blinded, placebo-controlled,

and delayed-start phase II/III trial, Stem Cells in Spinal Cord

Injury (SCI2) (NCT03935724), began in 2022. In this trial,

patients with subacute cervical and thoracic SCI are

intrathecally injected with the BM-MSC product (Neuro-

Cells). The trial is expected to be completed by 2024.

Regarding UC-MSCs, allogeneic UC-MSCs were

administered intravenously in an open-label phase I/IIa RCT

for acute SCI (NCT04331405). This trial showed only two mild

adverse events (transitory mild hyperthermia after cell infusion)

and most patients experienced neurological improvement,

although the results from the phase IIa trial are still pending

[194]. Currently, the same group is conducting a single-blinded

phase I/II RCT for acute SCI, Systemic Umbilical Cord Blood

Administration in Patients with Acute Severe Contusion Spinal

Cord Injury II (SUBSCI II) (NCT05693181), which began in

2022 and is estimated to be completed by 2025.

As for AD-MSCs, an open-label, single-arm phase I trial, the

Adipose Stem Cells for Traumatic Spinal Cord Injury

(CELLTOP) (NCT03308565), was conducted at the Mayo

Clinic from 2017 to 2021. In this trial, participants with

subacute and chronic SCI intrathecally received AD-MSCs.

Recent results indicated no serious adverse events, with 7 out

of 10 participants showing improvement in AIS grade post-

injection [170]. Another phase I/II RCT for acute thoracic SCI

(NCT02917291) involved transplanting allogenic AD-MSCs

(FAB117-HC) into the injured spinal cord. This trial was

expected to be completed by 2023, though its current status

is unknown.

Multilineage-differentiating stress-enduring (Muse) cells,

identified as stress-tolerant pluripotent stem cells within

MSCs, are promising for SCI therapy [195]. Muse cells

recognize injured sites with sphingosine-1-phosphate (S1P) via

the S1P receptor 2 and migrate accordingly. A preclinical study

showed that they reduced cystic cavities and preserved axons

[196]. An open-label single-arm phase II trial using Muse cells

(CL2020) for acute/subacute cervical SCI (jRCT1080224764) was

conducted in Japan. The trial was completed in 2023, and the

results are expected to be reported in the near future.

C3 transferase
C3 transferase inhibits Rho signaling, consequently

promoting axonal growth and regeneration [197, 198]. An

open-label, single-arm, phase I/IIa trial (NCT00500812) was

conducted from 2005 to 2009, and Cethrin, a recombinant

C3 transferase, was applied to the surface of the dura mater

overlying the injured lesion during decompressive surgery [199].

No serious adverse events were reported, and then, a phase IIb/III

RCT, SPinal Cord Injury Rho INhibition InvestiGation

(SPRING), was conducted from 2016 to 2018

(NCT02669849). Unfortunately, this trial was terminated

because the interim efficacy results, evaluated by the upper-

extremity motor score, did not show a significant difference

between the C3 transferase group and the placebo [171].

Anti-Nogo-A antibody
Nogo-A is one of the myelin-associated proteins that inhibit

neuronal growth by activating the Rho/ROCK pathway upon

binding to the Nogo receptor [200]. Therefore, the anti-Nogo-A

antibody has the potential to improve axonal regrowth by

mediating Rho/ROCK signaling, as demonstrated in preclinical

research using primate models [201]. An open-label phase I trial

utilizing recombinant anti-Nogo-A antibody (ATI355) for acute

traumatic SCI (NCT00406016) was performed from 2006 to

2011 and found no drug-related serious adverse events [202]. A

phase II RCT trial using anti-Nogo-A antibody (NG-101) for acute

cervical SCI, Nogo Inhibition in Spinal Cord Injury (NISCI)

(NCT03935321), was initiated in 2019 and recently completed

in 2023. In this trial, the anti-Nogo-A antibody treatment did not

show a statistically significant benefit for the primary efficacy

endpoint. The detailed results, including post hoc analysis, have

not yet been published. Similarly, a phase I/II trial using a soluble

Nogo-Receptor-Fc decoy (AXER-204) for chronic cervical SCI,

ReNetX Safety Efficacy and Tolerability of AXER-204 for Chronic

SCI (RESET) (NCT03989440), was conducted from 2019 to 2022.

It demonstrated safety; however, no significant differences were

observed for secondary efficacy endpoints between the AXER-204

group and the placebo group [203].

Endothelin B receptor agonist
Sovateltide, also known as IRL-1620 or PMZ-1620, is an

endothelin B receptor agonist that has enhanced neuronal

differentiation and reduced apoptosis in animal models of

cerebral infarction [204, 205]. Following the promising results

of a RCT with Sovateltide for acute cerebral ischemic stroke

[206], a phase II RCT of PMZ-1620 for acute SCI

(NCT04054414) was initiated in 2019. The trial is currently

ongoing and is estimated to be completed in 2024.

Anti-repulsive guidance molecule A
(RGMa) antibody

RGMa is a protein that activates the RhoA-Rho kinase

pathway and consequently inhibits axonal regeneration [207].

In preclinical research using a primate model of SCI, an RGMa

antibody facilitated the recovery of manual dexterity by

enhancing the penetration of corticospinal tract fibers into

laminae VII and IX [208]. To date, a few clinical trials are

ongoing. Phase II RCT using a human anti-RGMa

monoclonal antibody, known as Elezanumab (ABT-555), for

acute SCI (NCT04295538) was initiated in 2020 and is

estimated to be completed in 2026. Additionally, the expanded
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access program for Elezanumab has been approved

(NCT04278235). Another phase II RCT using MT-3921 for

acute cervical SCI (NCT04683848) was started in 2021 and is

estimated to be completed in 2025.

Others

CSF drainage
As SCPP is determined by the difference between MAP and

intraspinal pressure, CSF drainage through a lumbar intrathecal

catheter placed into the subarachnoid space is another method to

maintain spinal cord blood flow. This procedure is commonly

utilized for patients undergoing thoracoabdominal aortic

aneurysm repair surgery, which potentially has a risk of spinal

cord ischemia due to hypoperfusion from the important segmental

artery connected to the anterior spinal artery [209]. A phase I

clinical trial for acute SCI (NCT00135278) that commenced in

2006 indicated that CSF drainage did not result in any significant

adverse events. However, it failed to demonstrate a significant

difference in the ASIA motor score, likely due to the small sample

size [210]. Following this trial, a phase II RCT was conducted from

2015 to 2019 (NCT02495545) to compare outcomes betweenMAP

maintenance with CSF drainage andMAPmaintenance alone. The

results of this trial have not yet been published.

Therapeutic hypothermia
Therapeutic hypothermia is used in various medical

scenarios to minimize secondary damage to the central

nervous system. For instance, the 2020 American Heart

Association Guidelines for cardiopulmonary resuscitation

recommends that the target temperature for patients who

achieve return of spontaneous circulation should be

maintained between 32°C and 36°C for at least 24 h [211].

Therapeutic hypothermia is also regarded as a neuroprotective

strategy for acute SCI. Several preclinical and clinical studies have

suggested that this procedure might improve behavioral outcomes

[212, 213]. A RCT comparing systemic hypothermia with standard

treatment (NCT02991690) was initiated in 2017 and is expected to

be completed by 2024. According to the interim report published

in 2022 [214], preliminary data indicated that modest systemic

hypothermia (33°C for 48 h) following acute SCI was not

associated with an increased risk of complications. The results

are anticipated to clarify the efficacy of therapeutic hypothermia.

Examples of therapies at the
advanced stages of translation

Riluzole

Riluzole, a benzothiazole approved by the FDA for the

treatment of amyotrophic lateral sclerosis, acts as a

neuroprotective agent. It blocks sodium channels and reduces

glutamate-associated excitotoxicity by decreasing glutamate

release from the presynaptic terminal, preventing glutamate

receptor hypofunction, and stimulating glutamate uptake

[215]. Following SCI, voltage-sensitive sodium channels are

constitutively activated, leading to increased intracellular

sodium concentration, cellular swelling, and intracellular

acidosis [216]. Additionally, the increase in intracellular

sodium facilitates the influx of calcium ions through the Na+/

Ca2+ exchanger, resulting in the extracellular release of excess

glutamate and localized cell death. Riluzole is well-suited to

inhibit these processes involved in secondary injury.

Based on promising results from several pre-clinical

studies supporting the effectiveness of riluzole for acute

SCI [217, 218], a phase I clinical trial for demonstrating

the safety of riluzole in acute SCI (NCT00876889) was

conducted between 2010 and 2012. This trial demonstrated

that there were no serious adverse events associated with

riluzole [219]. Additionally, patients with cervical SCI

treated with riluzole had a significantly higher mean ASIA

motor score at 90 days post-SCI compared to matched

patients in the North American Clinical Trials Network

SCI Registry (31.2 points vs. 15.7 points; p = 0.021). These

encouraging results led to a double-blind phase IIb/III RCT,

the Riluzole in Acute Spinal Cord Injury Study (RISCIS)

(NCT01597518), initiated in 2014. Originally planned to

enroll 351 patients, the trial was terminated in 2021 with

193 participants due to the COVID-19 pandemic. The

primary efficacy outcome of the Upper Extremity Motor

score at 180 days post-SCI showed no significant difference

between the riluzole and control groups, likely due to

insufficient power [157]. However, post hoc analysis

revealed some hopeful results; for instance, the Upper

Extremity and Total Motor score in the AIS C population

treated with riluzole at 180 days post-SCI were significantly

better than those without, according to multivariate linear

regression models. Although this trial could not definitively

determine the efficacy of riluzole, Fehlings et al. concluded

that riluzole could be considered as one of therapeutic options

in the clinical settings, given the lack of alternative

pharmacological treatments for severe SCI. Currently

improved techniques for trial design and handling the

heterogeneity of patients will enhance future results.

Additionally, a phase III RCT for chronic cervical SCI

(NCT01257828) was also conducted between 2012 and 2017.

This trial did not show significant difference between the riluzole

and control groups in the primary efficacy endpoint measured by

the change in the modified Japanese Orthopaedic Association

score at 6 months post-intervention [220]; however, the latest

secondary analyses using a global statistical test showed a

significant functional improvement at 1-year post-intervention

in the riluzole group compared to the control group (in press).

Riluzole remains a promising pharmaceutical treatment for SCI.
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TABLE 3 Summary of neurorehabilitation and stimulation strategies on spinal cord injury patients.

Approach Treatment type Study
design

Stage of SCI Sample
size

Main outcome References

Kinesiotherapy and rTMS in
patients after Incomplete
Cervical or Thoracic SCI

rTMS enhanced the
corticospinal synaptic

transmission

Clinical
Research

Incomplete SCI at
the

C2–Th12 levels

26 Neurophysiological recordings
produced significantly better
MEP parameters in the K + rTMS
group. This effect was sustained
for at least 5 months

Wincek
et al. [229]

5 Hz rTMS on sensory, motor,
and autonomic function

Decreased motor cortical
excitability

Clinical
Research

Chronic SCI 15 Active motor threshold for the
most caudally innervated hand
muscle was increased with slightly
improved hand function

Kuppuswamy
et al. [224]

rTMS of the motor cortex on
central pain after SCI

Depression scores were
reduced

Clinical
Research

Thoracic SCI 11 Long-term clinical effect on
central pain. Pain scores were
reduced and continued to
improve at follow-up

Defrin
et al. [226]

SCS on spasticity Enhancing pre- and post-
synaptic spinal inhibitory

mechanisms

Clinical
Research

Chronic SCI 12 Spasm was significantly reduced
immediately after SCS, and
spasticity measures were
improved by 2 h post-induction

Hofstoetter,
2020 [230]

Non-invasive spinal cord
electrical stimulation for arm
and hand function in chronic

tetraplegia

Improved the recovery of
sensory function

Decrease in the frequency
and severity of muscle

spasms
Reduced pain

Clinical
Research

Chronic
Cervical SCI

65 Safe and effective for improving
hand and arm function

Moritz
et al. [231]

Exercise program on the
rehabilitation of patients

with SCI

Improve resistance and
muscular strength

Clinical
Research

Thoracic SCI 13 Positive impact on physical
function

Durán
et al. [232]

Targeted stimulation for
restoration of motor and
autonomic function in
individuals with SCI

NA Clinical
Research

Thoracic SCI
cervical SCI

47 Effective strategies for the
concurrent recovery of the
various effects associated with
severe chronic SCI

Angeli
et al. [233]

Targeted neurotechnology
restores walking in SCI

patients

Adaptive control of paralyzed
muscles during overground

walking, locomotor
performance improved,

regained voluntary control
over paralyzed muscles and
walk or cycle in ecological

settings

Clinical
Research

Chronic
cervical SCI

3 Technological framework for
improving neurological recovery
and supporting the activities of
daily living after SCI

Wagner
et al. [234]

Recovery of overground
walking after chronic motor

complete SCI

Recovery of walking,
standing, and trunk mobility

Clinical
Research

Chronic SCI
C4–T4

4 Intentional over-ground walking
ability years after SCI

Angeli
et al. [235]

Activity-dependent spinal cord
neuromodulation rapidly

restores trunk and leg motor
functions after complete

paralysis

Sufficient improvement to
restore activities

Clinical
Research

Chronic SCI 3 Activity-specific stimulation
programs improved stand, walk,
cycle, swim, and control trunk
movements

Rowald
et al. [236]

Walking naturally after SCI
using a brain-spine interface

BSI enables natural control
over the movements of legs to
stand, walk and climb stairs

Clinical
Research

Chronic SCI 1 Neurorehabilitation supported by
the BSI improved neurological
recovery

Lorach
et al. [237]

Robot-assisted gait training
improves walking function and

activity in SCI

Improvements in gait
distance, leg strength, and
functional level of mobility

Clinical
trials

Incomplete SCI 502 RAGT treatment is a promising
technique to restore functional
walking and improve locomotor
ability

Nam
et al. [238]

(Continued on following page)
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Neuromodulation and stimulation

The main goal of rehabilitation strategies after SCI is to

enhance functional recovery [221]. One possible way to achieve

this goal is to strengthen the efficacy of the residual neuronal

pathways [222, 223]. Electrical and magnetic neural stimulation

induces significant and long-lasting neuroplastic effects that

involve neuroplasticity markers [222, 223].

Transcranial magnetic stimulation

Non-invasive repetitive transcranial magnetic stimulation

(rTMS) has been applied to target sensory and motor function

impairments, spasticity, and neuropathic pain [222]. The

influence of rTMS in patients with SCI may confirm the

hypothesis about the significance of the propriospinal system

and other residual efferent pathways in the recovery of motor

control [224]. Moreover, rTMS targeted at the motor cortex has

suggested therapeutic potential in alleviating chronic

neuropathic pain [225–228], indicating its beneficial effects in

evaluating and enhancing motor function in SCI patients [224,

229] (Table 3).

Electrical stimulation

Electrical stimulation can accelerate axonal growth and

myelination [240], stimulate neurons to discharge bioelectric

signals to strengthen muscle contraction, and reconnect the

neural network of the spinal cord [241]. Therefore, the baseline

excitability of neural circuits is regulated by electrical

stimulation, leading to action potentials within and between

neural circuits by adjusting excitability to a precise level [242].

Electrical stimulation also enhances neurotransmitter release

capacity via recruiting local neurotransmitters across synaptic

sites by stimulating the amount of neurostimulation of afferent

nerve fibers [242]. Moreover, epidural electrical stimulation

leads to greater recovery of motor output after a severe SCI, and

with intensive training and electrical stimulation, recovery of

walking, standing, and trunk mobility can occur years after SCI

[235]. Within a single day, activity-specific stimulation

programs have enabled standing, walking, cycling,

swimming, and control of trunk movements [236]. In

addition, Transcutaneous Spinal Cord Stimulation (SCS)

shows promise in reducing spasticity [230]. The application

of this non-invasive spinal cord electrical stimulation technique

is safe and effective for improving hand and arm function in

individuals with cervical SCI (Table 3) [231].

Electrical stimulation and neuromodulation strategies show

promise for enhancing motor function in SCI patients. Despite

their potential, the use of electrical and magnetic stimulation in

SCI rehabilitation faces several considerations and limitations,

necessitating significant validation through clinical trials.

Additionally, methodological variability across studies

complicates the interpretation of outcomes. Standardization of

stimulation parameters, patient selection criteria, and outcome

measures are essential to ease meaningful comparisons and

robust conclusions regarding stimulation effectiveness in SCI

rehabilitation.

Neurorehabilitation

Various types of motor training such as bicycling,

swimming, and locomotor training decrease the

inflammatory response, increase neurotrophins, and may

strengthen spared functions and guide spinal reorganization

[83]. Exercise has been shown to preserve muscle mass [243],

restore motor and sensory function [232, 244, 245], induce

synaptic plasticity [246], increase the concentration of

neurotrophic factors in spinal and muscle tissue [247, 248],

and reduce inflammation around the injured site [245]

(Table 3).

Studies investigating the timing of exercise post-injury

suggest it may yield advantageous or adverse consequences

on the recovery outcomes [249–251]. Despite numerous

studies, several questions remain unanswered regarding

therapeutic tools, such as optimal rehabilitation timing, the

most suitable intensity, duration, and frequency, as well as the

best use of task-specific training for recovery of various

functional modalities.

TABLE 3 (Continued) Summary of neurorehabilitation and stimulation strategies on spinal cord injury patients.

Approach Treatment type Study
design

Stage of SCI Sample
size

Main outcome References

Robotic assisted gait training
on ambulation and functional
capacity in patients with SCI

Improvement in the walking
index and functional

independence measure scores

Clinical
Research

Complete and
Incomplete SCIs

88 Robotic-assisted gait training
combined with conventional
therapy is superior to
conventional therapy in terms of
gait function and level of
disability

Yıldırım
et al. [239]

Abbreviations: SCI, spinal cord injury; SCS, transcutaneous spinal cord stimulation; rTMS, repetitive transcranial magnetic stimulation; scES, spinal cord epidural stimulation; BSI,

brain–spine interface; RAGT, robot-assisted gait training.
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Robot rehabilitation and brain–computer
interfaces

In recent years, neural interfaces such as Brain-computer

interfaces (BCIs) have used physiological brain activity to control

external devices, thereby enabling severely disabled patients to

interact with the outside environment [252]. Invasive and non-

invasive BCI approaches have been used to promote neural

control of a robotic arm [253] for patients with severe

paralysis. This system has the potential to provide a new way

of controlling their wheelchair [238, 239, 254].

All approaches to adaptive technology for patients with SCI

have aimed to provide patients with control of their paralyzed

limbs [233, 234, 237]. However, the possibility that similar

systems could bring neuroplastic alterations that contribute to

functional rehabilitation remains unclear. The technologies in

combination with current pharmacological and

neurostimulation approaches may offer a crucial pathway to

motor recovery following SCI [255, 256].

Ethical considerations

While the medical concerns of SCI such as neuropathic pain

and spasticity have received significant attention, a smaller

number of works have focused on ethical issues related to

treatment and research in SCI, such as voluntary consent,

patient welfare, transparency, medical decision-making, and

the patient-physician relationship [257, 258]. The perspectives,

priorities, and experiences of individuals living with SCI are

influenced by social, environmental, clinical, and injury-

associated aspects [259]. In addition, living with SCI is

aggravated by a fair treatment concern and sociocultural

factors at a systems level, such as a lack of accessible support,

information, and rehabilitation as well as healthcare services,

which create hindrance to reunification of research and clinical

studies [260].

SCI research raises crucial ethical questions concerning

participant welfare and the use of funding [257–260]. The

approach of a consistent clinical trial plays a very important

role in the reliability of the research, especially the inclusion and

exclusion criteria, ethical issues, treatment uniformity, and

informed consent [258, 259]. The inclusion and exclusion

criteria to control the consistency of the trial must be

developed based on the specific research content [259, 261].

Informed consent for clinical trials as well as the standardization

of the operation procedures and rehabilitation treatment is

necessary [261].

However, within SCI research, the concept of data sharing,

meta-analysis, and the application of new statistical

techniques such as recursive partitioning and the global

statistical test show promise. A notable challenge is that

publications focusing on preclinical research often present

only a fraction of the generated data [262]. This limitation

may be attributed, in part, to the constraints imposed by

journals on word counts as well as the number of figures

and tables allowed. Nonetheless, in recent years, various

stakeholders within the SCI research community have

actively advocated for publication standards and promoted

the sharing of experimental data. Initiatives like The Open

Data Commons for Spinal Cord Injury (ODC-SCI.org) have

emerged, facilitating data sharing and enabling pooled data-

driven discoveries while appropriately acknowledging the

contributors of valuable SCI data [261].

Research involving individuals with SCImust prioritize patient

well-being and minimize any potential harm or discomfort related

to experimental procedures [263–265]. In addition, clear

communication about the risk factors and potential benefits of

research is essential; therefore, SCI patients should have access to

information about the research process and its implications.

Moreover, transparency regarding funding, prioritizing research

subjects with the greatest potential to improve quality of life and

develop new treatments, adhering to established standards of

scientific integrity, accurately reporting findings, avoiding data

manipulation, and community engagement to promote ethical

conduct are key factors in clinical trial studies [263–265].

The burden of SCI and inequality in the
international context

The challenges faced by individuals with SCI across different

countries and regions around the world include issues such as

access to healthcare, rehabilitation services, and supporting

devices. In many parts of the world, there is a lack of

resources and support systems for people living with SCI,

leading to increased vulnerability and inequality.

Understanding and addressing these issues on a global scale is

crucial for improving the quality of life and outcomes for

individuals with SCI worldwide [266].

Unaddressed healthcare needs are significant for SCI

patients, where people in low-income groups tend to be

more affected. Among the barriers to meeting healthcare

needs are healthcare cost, transportation, and service

availability [266]. To improve the situation, a combination

of measures from the health and social systems are required.

Improving access to healthcare to ensure individuals with SCI

have access to affordable and appropriate assistive

technologies, specialized medical care, and rehabilitation

services. This can improve functional outcomes and quality

of life for all SCI patients regardless of their socioeconomic

status. Providing equal access to education and employment

opportunities for individuals with SCI and promoting public

awareness to reduce stigma contributes to creating a more

equitable and inclusive world for individuals living with SCI

globally [266, 267].
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Future directions:
combinatorial therapies

As each therapy seeks to target aspects of SCI, combinatorial

approaches are now emerging to match the disease timeline and

improve functional outcomes. Exemplifying the notion of

combinatorial approaches to SCI can be done with the

strategies currently available. Rehabilitative as well as FES

(functional electrical stimulation) therapies rely on the

presence of remaining neurons and parenchyma for the

establishment of new synapses and subsequent functional

recovery. Complementing rehabilitation and FES are early

surgical intervention and stem cell therapies. Early surgical

intervention prevents further secondary injury through

reperfusion of the injured spinal cord, increasing the net

preserved CNS tissue for synapse recruitment as well as

reducing inflammation and scarring hostile to recovery.

Similarly, stem cell therapy can be used for the replacement of

lost cells in the CNS as well as creating a microenvironment

conducive to repair through reduced inflammation. This

potentially gives greater neuronal and synapse recruitment for

better functional outcomes and impact from

rehabilitation and FES.

Pharmaceutical options are currently limited but follow a

similar trajectory, with each drug potentially playing a different

role dependent on which aspect of SCI injury is targeted. The

growing movement towards personalized medicine is highly

applicable to the heterogeneous nature of SCI. There is a great

degree of variability in effectiveness and perceived outcomes

between treatments across patients. This has been highlighted

particularly well by patient perceptions on the effectiveness of

different treatments for chronic pain. Preferences have been

shown for different opioid medications, diazepam,

rehabilitative exercise, as well as massage – all to differing

degrees [268, 269].

Conclusion

There have been remarkable advancements in medical,

surgical, and rehabilitative treatments for SCI. However,

despite these advances, opportunities exist to develop

reparative and regenerative approaches to enhance outcomes.

Although it remains true that the outcomes in SCI improve in a

very incremental fashion due to the complex nature of SCI

pathophysiology, the advancements in techniques and

strategies are impressively thorough and creative. By

incorporating patient-centric approaches, insight into

individual differences can guide current and emergent

treatment as well as provide better autonomy to patients.

Adapting each regenerative approach into a cohesive strategy

in concert remains a difficult task yet even modest improvements

in sensory and motor function returning to patients can be both

meaningful and motivating in the face of a highly

debilitating disease.
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Abstract

Bone fractures and bone loss represent significant global health challenges,

with their incidence rising due to an aging population. Despite autologous bone

grafts remain the gold standard for treatment, challenges such as limited bone

availability, immune reactions, and the risk of infectious disease transmission

have driven the search for alternative cell-based therapies for bone

regeneration. Stem cells derived from oral tissues and umbilical cord

mesenchymal stem cells (MSCs) have shown potential in both preclinical

and clinical studies for bone tissue regeneration. However, their limited

differentiation capacity and wound healing abilities necessitate the

exploration of alternative cell sources. In this study, we generated induced

pluripotent stem cells (iPSCs) using a safe, nonviral and mRNA-based approach

from human periodontal ligament fibroblasts (PDLF), an easily accessible cell

source. These iPSCs were subsequently differentiated into MSCs, referred to as

induced MSCs (iMSCs). The resulting iMSCs were homogeneous, highly

proliferative, and possessed anti-inflammatory properties, suggesting their

potential as a superior alternative to traditional MSCs for regenerative

therapy. These iMSCs demonstrated trilineage differentiation potential, giving

rise to osteocytes, chondrocytes, and adipocytes. The iMSC-derived osteocytes

(iOSTs) were homogeneous, patient-specific and showed excellent attachment

and growth on commercial collagen-based membranes, highlighting their

suitability for bone tissue regeneration applications. Given their promising
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characteristics compared to traditional MSCs, PDLF-derived iMSCs are strong

candidates for future clinical studies in bone regeneration and other

regenerative dental therapies.

KEYWORDS

mesenchymal stem cells, induced pluripotent stem cells, differentiation, osteocytes,
regenerative therapy

Impact statement

We introduced a new and easily accessible homogeneous

induced mesenchymal stem cells from dental tissue, which can be

readily obtained during routine tooth extractions or surgeries for

personalized regenerative dentistry. These stem cells represent a

unique alternative form of stem cells distinct from traditional

MSCs, with better proliferation activity, immunomodulatory

function, and wound-healing properties, making them a

promising candidate for advancing regenerative dental therapies.

Introduction

Bone fractures and bone loss are significant healthþ problems

worldwide, and their incidence is increasing due to the aging

population [1]. These problems arise from the slowing down of the

bone remodeling process and the reduction of minerals in the

extracellular matrix. Congenital abnormalities, trauma, infectious

diseases and cancer contribute to the growing number of patients

needing bone reconstruction [2, 3]. Despite autologous bone grafts

being considered the gold standard, surgeons and patients face

various challenges with current treatments. These include the

shortage of bone sources, immune reactions, transmission of

infectious diseases, and difficulties in graft harvesting [4, 5].

These challenges have limited the development of cell-based

therapies for bone regeneration. Dental-derived stem cells,

obtained from extracted, impacted, and exfoliated teeth, are a

promising source for regenerativemedicine due to their availability

and potential for multilineage differentiation. Numerous

preclinical studies have demonstrated their potential in treating

medical conditions including ischemic disease [6, 7], neural tissue

injuries [8, 9], diabetes [10, 11], skin and hair injuries [12, 13],

muscular dystrophy [14–16] and cartilage defects [17, 18]. Dental-

derived cells have also been successfully used for bone tissue

regeneration in several preclinical and clinical studies [19–23].

Umbilical cord mesenchymal stem cells (UC-MSCs) are

another source of multilineage stem cells with properties such

as high self-renewal and low immunogenicity. They are isolated

and cultured from umbilical cord [24]. For years, the storage of

UC-MSCs has been utilized worldwide as a source of cells for

future therapy. In some countries, at the time of delivery, most

parents are advised to preserve the umbilical cord stem cells or

umbilical blood in a stem cell bank for potential use in autologous

stem cell therapy. However, this option is only available at the time

of birth and is very expensive, making it impractical for the

majority of people [25]. Mesenchymal stem cells (MSCs) from

bone marrow, adipose tissues and umbilical cord blood have been

shown to be promising alternative sources for MSCs and have

become important in regenerative medicine [26–29]. However,

these cells from human body are not easily accessible due to

invasive and discomforting procedures. Moreover, these cells are

categorized as adult stem cells, and their differentiation capacity is

limited compared to embryonic stem cells. Access to embryonic

stem cells is not feasible, so scientists are striving to develop an

alternative method to generate induced pluripotent stem cells

(iPSCs), a promising cell sources for treating human diseases.

This iPSC technology provides a basic platform for

generating patient-specific pluripotent stem cells and

subsequently differentiating them into specific cell lineages for

cell therapy due to their remarkable proliferation ability and

immune compatibility. However, the reprogramming approach

for deriving iPSCs needs improvement in terms of technique,

efficiency, and availability of primary autologous cell sources.

Initially, these cells were developed using retro- and lentiviruses

to deliver vectors containing genes required for cell

reprogramming. One major disadvantage of this method is

the uncontrolled integration of viral DNA into host cell

genomes [30]. To address this limitation, different methods

have been developed. Our non-viral and mRNA-based

reprogramming method, utilizing mRNA of pluripotent genes

and a cocktail of miRNAs, has demonstrated high efficiency and

the production of high-quality autologous iPSCs with high

replicative and differentiation potentials, suitable for

regenerative therapy [31]. These iPSCs present new

opportunities for understanding embryogenesis and a great

impact on drug screening and toxicological tests [26].

Human periodontal ligament fibroblasts (PDLF) are easily

accessible cells that can be obtained from extracted teeth. In this

study, we utilized PDLF as an optimal source for generating

iMSCs which is similar to UC-MSCs and evaluated the efficacy of

PDLF derived iMSCs in regenerative therapy.

Materials and methods

Antibodies and reagents

Primary antibodies for OCT4, NANOG, SOX2 (Cell Signaling

Technology), β-actin, TRA1-60, SSEA4, VE-Cadherin, α-fetoprotein
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(AFP) (Santa Cruz Biotechnology, Inc.) and Nestin (R&D Systems)

were used to perform in vitro protein analysis (Supplementary Table

S1). Secondary antibodies APC. TRITC, PE and FITC-conjugated

anti-donkey, anti-mouse, anti-goat and anti-rabbit (Jackson

ImmunoResearch Laboratories, Inc.) were used respectively.

Culture media including NutriStem (NS) medium, Mesencult

medium (Stem Cells), reprogramming kits (Repro cell) and

DAPI stain (Life Technologies) were used in this study. RNA of

cells was collected using TRIzol reagent (Ambion by Life

Technologies), and the quantification of the samples was

evaluated by the NanoDrop 8000 Spectrophotometer (Thermo

Fisher). The list of the primers for specific gene expression is

mentioned in Supplementary Table S2. The isolated protein

samples were quantified by Bradford’s method using the

AccurisTM instrument SmartReader and the absorbance read

at 595 nm.

PDLF and UC-MSC cell culture

Human PDLF cell line from Lonza (Walkersville, MD; cc-

7049) was gifted by Dr. Ammaar Abidi. Cells were grown in a

60-mm or 100-mm dish containing SCBM fibroblast culture

medium (Lonza, United States) supplemented with 15% FBS,

and 1% penicillin/streptomycin antibiotics and maintained

at 37°C in a 5% CO2 incubator. The human UC-MSCs

(referred to as MSCs) were purchased from ScienCell

Research Laboratories. The cells were cultured in

Mesencult medium (Reprocell, United States) and

maintained as per supplier’s instruction. When the cells

become 80% confluent, they were sub-cultured and used

for reprogramming experiments.

Non-viral reprogramming of human PDLF
cell-derived iPSCs (referred to as iPSCs)

PDLF cells were sub-cultured in NS medium (Stemcell

Technologies, Canada) in a 6-well plate coated with iMatrix

(Reprocell USA Inc). At 80% confluency, the cells were

reprogrammed with the mRNA of OCT4, NANOG, SOX2,

KLF4, MYC and LIN28 along with a cocktail of microRNAs

(Reprocell USA Inc) using Lipofectamine RNA iMAX

transfection agent [32, 33]. After 8 days, several iPSC-

granulated colonies were generated which resembled

human embryonic stem cell colonies. These colonies were

characterized for pluripotency using real time quantitative

PCR, Western blot, and immunofluorescence analyses.

TRA1-60, a marker of pluripotent stem cells, was

employed to identify positive colonies. These colonies were

manually picked from day thirteen onwards and subsequently

cultured and maintained on Matrigel-coated plates in

NS medium.

Trilineage differentiation of iPSCs

To evaluate the trilineage differentiation potential of iPSCs,

we differentiated them into three distinct cell lineages:

mesoderm, endoderm, and ectoderm [32].

For mesoderm differentiation, specifically endothelial cells

(ECs), iPSCs were cultured in NS medium in a 30-mm culture

dish. When the cells reached 70%–80% confluency, the NS

medium was replaced with mesodermal medium (DMEM

supplemented with 1X B27, 1X N2, 5 μM CHIR, 25 ng

BMP4) and cultured for 3 days. After 3 days, mesodermal

medium was replaced with StemPro34 medium for 4 days,

followed by the addition of endothelial EGM2 medium to

promote the development of matured ECs. The generated ECs

were characterized for endothelial-specific genes VE-cadherin,

and CD31by qRT-PCR analysis and protein expressions by

immunofluorescence analysis.

For endoderm differentiation, iPSCs were cultured in NS

medium. When the iPSCs reached 70%–80% confluency, cells

were cultured with Stemdiff definitive endoderm medium

(Stemcell Technologies). Twelve days post culture, we

observed that these cells exhibited a cuboid shaped

morphology representing primary hepatocytes. The cells were

harvested and subjected to qRT-PCR analysis to evaluate the

gene expression of hepatocyte specific markers, including

apolipoprotein A1 (APOA1) and α−fetoprotein (AFP).

Additionally, immunofluorescence analysis was performed to

access AFP protein expression.

For ectodermal differentiation, iPSCs were similarly

cultured in NS medium, when the cells reached 70%–80%

confluency, the NS medium was replaced with the neuronal

induction medium (Stemcell Technologies). After 10 days, we

observed the morphological changes indicative of successful

differentiation, with the cells adopting shapes resembling

neuronal cells. These cells were further analyzed for

neuronal-specific gene expression, including OLIG2 and

MAP2 by qRT-PCR analysis and protein expressions of

GFAP and Nestin by immunofluorescence staining.

Differentiation of iPSCs into iMSCs

For the differentiation of iPSCs into iMSCs, we adhered to

the protocol previously developed in our lab [31]. Briefly, the

iPSCs were cultured in a 30-mm culture dish with NS medium.

When these cells reached 80% confluency, NS medium was

replaced with mesenchymal induction medium (STEMdiff-

ACF, Stem Cell Technologies) and incubated for 4 days

followed by culturing in MesenCult ACF Plus medium for

21 days. By day 21, the cells acquired the matured MSC

morphology. This was confirmed through analysis of mRNA

and protein expression using qRT-PCR, immunostaining,

Western blot and flowcytometry analyses. The characterized
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cells were further sub-cultured and maintained in MesenCult

ACF plus medium.

Trilineage differentiation potential
of iMSCs

To evaluate the trilineage differentiation capacity of the

developed iMSCs, the cells were seeded at the density of 7.5 ×

105 cells in a 30-mm culture dish containing MesenCult ACF

Plus medium. They were subsequently induced to differentiate

into chondrocytes, adipocytes, and osteocytes following our

established differentiation protocol [31].

To induce osteocyte differentiation, once the iMSCs reached

80% confluency, osteocyte differentiation medium containing

Dexamethasone and BMP4 was introduced. After 7 days, the

medium was substituted with osteocyte mineralization medium

and maintained for 2 weeks. Finally, the induced osteocytes

(iOSTs) were evaluated for expression of osteogenic specific

markers using qRT-PCR analysis. Alizarin red (ALZ) staining

was employed to detect osteocyte mineralization. Later the cells

were seeded onto a commercially available collagen-based

scaffold to evaluate their adherence to available dental

membranes, paving the way for potential clinical applications.

For chondrocytes differentiation, when the iMSCs attained

80% confluency, chondrocyte differentiation medium (Thermo

Fisher) was added and cultured for 17 days. The differentiated

chondrocytes (iCHON) were characterized by the expression of

chondrocyte specific mRNA along with Alcian blue staining.

For adipocyte differentiation, once the iMSCs reached 80%

confluency, adipocyte differentiation medium (Thermo Fisher)

was introduced. After 11 days, the induced adipocytes (iADIPO)

were harvested and characterized through qRT-RCR for

adipocyte specific mRNA expression and adipocyte lipid

droplets were visualized using Oil red staining.

Anti-inflammatory assay

To compare the immunomodulatory properties of iMSC and

MSC, the cells were treated with 1 μg/mL of LPS for 24 h. The LPS

stimulated cells were then harvested and analyzed for the

inflammatory and anti-inflammatory marker expression via

qRT-PCR following our previously described method [31].

Cell migration assay

The scratch test is a convenient method for assessing cell

migration in vitro. The steps include creating an artificial gap by

using an insert and seeding a cell monolayer on both sides. The

insert is used to provide a homogenous, cell-free space in the

middle of attached cells. Then the migration of the cells toward

the scratch is quantified by comparing the images at various time

points. This migration leads to covering the area and cell to cell

contact in the scratch. The major advantage is that it mimics cell

migration in tissues and organs [34]. In this study, the cell

migration potential of iMSCs and MSCs were assessed and

compared by scratch test. iMSC and MSCs were seeded at a

concentration of 2 × 104 in the insert placed in 30 mm cell culture

plates. After 24 h, the insert was removed (T0) and the percentage

of covered area was evaluated after 8 hours (T8) by ImageJ

software (NIH).

Colony formation assay

To determine the capacity of individual iMSCs and MSCs to

proliferate and form colonies through clonal expansion, we

performed a colony forming assay. This property was assessed

by seeding the cells into 30-mm plates at a density of 6.25 × 104 in

MesenCult proliferation medium (MesenCult™Proliferation Kit,

Stemcell Technologies) for 2 weeks. After a week small-to

medium-sized colonies were observed. At the end of 2 weeks

culture, the plates were stained by crystal violet. The cells were

placed on ice, washed with cold PBS and fixed with 100% ice-cold

methanol for 10 min. They were then incubated with 0.05%

crystal violet solution in 25% methanol for 20 min. Finally, the

cells were washed five times with water, and images were

captured using EVOS phase-contrast microscope. The

intensity of crystal violet staining was analyzed with

ImageJ software.

Assessment of differentiated osteocytes
growth on collagen-based membranes

To evaluate the clinical applicability of iMSC cells, they were

differentiated into osteocytes, as described earlier [31]. The

osteocytes were then seeded onto a commercial collagen-based

membrane (Zimmer BioMend absorbable collagen membrane).

The membrane was prepared by cutting it into 8 × 12 mm pieces

and inserting in a ring within a 30 mm culture plate. Osteocyte

differentiation medium was added to the ring, followed by the

addition of 10,000 osteocytes drop wise onto the membrane.

After 20 minutes 2 mL of medium was added to the plate, and the

cells were incubated for 2 weeks with medium changes every

3 days. After 2 weeks, the membrane was removed and rinsed

with PBS. It was then fixed in 2.5% glutaraldehyde for 12 hours at

4°C. The membrane was subsequently sectioned into two pieces

to evaluate the osteocyte adhesion and morphology by DAPI

staining followed by Scanning Electronic Microscopic analysis.

For nuclear staining, the membrane was washed with PBS and

DAPI stain solution was added to cover the membrane for

10 minutes. The membrane was washed again, and the images

were captured using fluorescent microscope.
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Scanning electron microscopy (SEM)

For SEM analysis, the membrane was first fixed in 2.5%

glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.4)

overnight at 4°C, followed by rinsing with 0.2 M sodium

cacodylate buffer (pH 7.4) every 30 min for a total of 1.5 h.

Subsequently, the membrane was rinsed with water and subjected

to sequential dehydration with increasing concentrations of

ethanol (50%, 75%, 95% for 15 min each, and 100% ethanol for

20 min). It was then immersed in hexamethyldisilane (HMDS,

Sigma) for 10 minutes and air-dried at room temperature. Before

SEM imaging, the membrane was mounted on aluminum stub

using carbon adhesive tabs and coated with a gold nanoparticle at

~100 Å, and then imaged.

Immunofluorescent staining

Weperformed immunostaining analysis to quantify the specific

proteins within the cells, as described previously [31, 32]. The cells

were grown in 4-well chamber slides, washed three times with

Dulbecco’s phosphate-buffered saline (DPBS), and then fixed with

4% paraformaldehyde for 5 min. After an additional three washes

with DPBS, the cells were permeabilized with 0.1% TritonX-100 in

DPBS for 3 min. The cells were then blocked with blocking buffer

for 30 min and incubated with primary specific antibodies for

overnight at 4°C, followed by a 1-hour incubation with secondary

antibodies at 37°C. After washing with DPBS three times, these cells

were stained with DAPI, and the staining was analyzed using either

a confocal or immunofluorescence microscope.

Western blot analysis

We conducted Western blot analysis to quantify the proteins

of interest as described in our earlier studies [31, 32]. Briefly, the

cells were washed with PBS, and lysis buffer was added for protein

isolation. The samples were then centrifuged at 12,000 g for 20min

at 4°C. The supernatant was carefully transferred to a new vial and

quantified using Bradford’s method with an Accuris™
SmartReader 96-well microplate absorbance reader at 595 nm.

These protein samples were uses for Western blot analysis.

FIGURE 1
Characterization of the pluripotency of PDLF-iPSCs. (A)Microscopic picture of PDLF and PDLF-iPSCs. (B) qRT-PCR analysis for the expression
of pluripotent genes NANOG, OCT3/4, and SOX2 in three clones of iPSCs on day 11. PDLF cells served as control. The relative mRNA expression was
normalized to the 18S gene. Results were expressed as fold change, and the values were calculated as the ratio of induced expression to control
expression (****p < 0.00001). (C) Western blot analysis showing OCT3/4 and (D) SOX2 protein expression levels in iPSC clones derived from
PDLF compared to the parent PDLF cells. Histone H3 was used as loading control. (E) Pluripotency-specific protein expression, including OCT4,
NANOG, SSA4, and SOX2, was assessed via immunofluorescence staining. DAPI staining was performed to visualize the nucleus.
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Software and statistical analysis

To account for any experimental bias, each experiment was

conducted in triplicate. The findings are expressed as Mean ± SD.

Comparisons were carried out using ANOVA (GraphPad Prism)

or the T-test, with a probability value of <0.05 deemed

statistically significant. Image analysis was performed using

ImageJ software (NIH). Flow cytometry analysis was

conducted using FlowJo software.

Results

Generation of iPSCs from PDLF: a
milestone for dental applications

The reprogramming of PDLF into iPSCs was accomplished

through mRNA transfection of reprogramming factors

combined with a miRNA cocktail, as outlined in our

previous articles [32, 33]. During reprogramming, alterations

in cell morphology were monitored throughout the process.

These changes were sequentially imaged using a phase-contrast

microscopy (Supplementary Figure S1). Starting from day 8,

several colonies of granulated iPSCs were observed. By the end

of day 10, cells with large nuclei that occupied most of the

cytoplasm with well-defined round and smooth boarder colony

are the typical morphology of pluripotent stem cells also

evident (Figure 1A; Supplementary Figure S2). Positive

colonies were identified using live TRA1-60 antibody

staining and selectively picked and cultured for generating

the pure population of PDLF iPSCs. Our findings indicate

that iPSCs were successfully generated from PDLF for dental

applications.

Characterization of iPSCs: pluripotency
assessment and lineage differentiation

We proceeded with further characterization of the iPSCs

by examining the mRNA and protein levels across different

clones. Our findings demonstrated a significant elevation in

mRNA levels of pluripotent genes OCT3/4, SOX2 and

NANOG compared to PDLF (Figure 1B). Moreover,

Western blot analysis confirmed notable protein expression

of OCT3/4 and SOX2 (Figures 1C, D), while

immunofluorescence staining also showed an increased

expression of SSEA4, OCT3/4, SOX2 and NANOG

markers, respectively (Figure 1E).

FIGURE 2
In vitro trilineage differentiation of PDLF-iPSCs (iPSCs) (A) iPSCs were cultured in mesodermal medium and differentiated to endothelial cells
(iENDO). After 8 days (D8) the mRNA expression of VE-Cadherin (VE-Cad) and CD31 was evaluated as an endothelial-specific gene. The significant
alterations in the expression of these genes in differentiated cells and control cells (PDLF and iPSCs) (**p < 0.001, ***p < 0.0001) were examined. (B)
Protein expression of endothelial cell surface markers CD31 (Red), and VE-Cad (Green) were detected by immunofluorescence staining. DAPI
(Blue) was used to visualize the nucleus. (C) iPSCs were cultured in endodermal differentiated medium and differentiated to Hepatocytes (iHEPO).
Hepatocytes specific genes were evaluated for endoderm differentiation. APOA1 and AFP gene expressions were assessed at day12 (D12) (*p < 0.01,
**p < 0.001). (D)Hepatocyte surfacemarker AFP (Green) was analyzed using immunofluorescent analysis. (E) iPSCswere differentiated to neural cells
in neuronal inductionmedium for 10 days (D10) and themRNA expression of neuronal specific genes includingOLIG2 andMAP2 in the differentiated
cells was evaluated (*p < 0.01, ****p < 0.00001). (F) Immunofluorescence staining demonstrating the expression of neuronal cell surface markers
GFAP (red) and NESTIN (green) in the differentiated cells. Nuclei are counterstained with DAPI (blue). The colocalization of red and green signals
indicates the co-expression of GFAP and NESTIN in the cells.
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Pluripotency of PDLF-iPSCs were further validated through

in vitro trilineage differentiation into endothelial cells

(mesoderm), hepatocytes (endoderm), and neuronal cells

(ectoderm). During endothelial differentiation, qRT-PCR

analysis revealed a significant upregulation in mRNA

expression of endothelial-specific genes, including VE-

Cadherin (VE-CAD) and CD31, compared to the control

(PDLF) and iPSCs (Figure 2A). This was further confirmed

by immunofluorescence staining, which showed the expression

of VE-CAD and CD31 proteins (Figure 2B). Following

endodermal differentiation, the cells exhibited elevated

mRNA levels of hepatocyte-specific markers, including α-
fetoprotein (AFP) and Apolipoprotein A1 (APO1)

(Figure 2C). Immunostaining further confirmed strong AFP

protein expression (Figure 2D), affirming their successful

differentiation into the endodermal lineage. During neuronal

differentiation, the differentiated cells showed enhanced

expression patterns of neuronal specific genes, including

oligodendrocyte transcription factor 2 (OLIG2) and

microtubule associated protein 2 (MAP2) than the iPSCs

and PDLF cells (Figure 2E). Moreover, the expression of

Nestin and GFAP in the differentiated cells was evident in

through immunofluorescence staining (Figure 2F). Overall,

these findings affirm the pluripotent nature of the

reprogrammed iPSCs, demonstrating their ability to

differentiate into all three germ layers of the embryo.

Comprehensive characterization and
differentiation potential of iPSCs
into iMSCs

After confirming the pluripotent nature of PDLF-derived iPSCs,

they were further differentiated into iMSCs through our standard lab

protocol as described earlier [31]. Morphological changes during the

differentiation process were observed and documented

(Supplementary Figure S3). To fully access the differentiation of

iPSCs to iMSCs, we examined the expression of iPSC-specific

genes, including OCT3/4, Nanog, and SOX2. Meanwhile, the

iMSC clones displayed decreased expression pattern of pluripotent

genes indicating the loss of embryonic properties during

differentiation (Figure 3A). To characterize the resulting iMSCs,

qRT-PCR analysis was performed for specific mesenchymal genes,

including CD73 and CD105 as positive markers and CD34 and

CD45 as negative markers. The results indicated an elevated

expression of positive markers along with a lower expression of

negative markers (Figure 3B). Interestingly, we found that the

iMSCs exhibited a greater level of maturation, with heightened

expression of MSC markers in comparison to iPSCs. The protein

expression of some of these markers was confirmed by flow

cytometric analysis, and immunostaining. Flowcytometric analysis

demonstrated that over 95% of the cells expressed the mesenchymal

cell surface markers CD73 and CD105. Conversely, the expression of

the negative marker CD34 was lowered (Figure 3C). This was

FIGURE 3
Generation and characterization of PDLF-iMSCs. (A) The expression of iPSC markers OCT4, NANOG and SOX2 was significantly decreased in
the differentiated cells (PDLF-iMSCs). The mRNA expression levels were normalized to 18s rRNA. (B) Expression analysis of mesenchymal-specific
genes and hematopoietic markers in PDLF-iMSCs. The differentiated cells (PDLF-iMSCs) showed a significant increase in the expression of
mesenchymal-specific genes CD73 and CD105 at different time points compared to iPSCs (**p < 0.001, ***p < 0.0001). In contrast, the
expression of hematopoietic markers CD34 and CD45 was negligible or significantly lower in PDLF-iMSCs compared to iPSCs (*p < 0.01). (C) Flow
cytometric analysis revealing over 95% cell expression of mesenchymal surface markers CD73 and CD105, alongside non-expression of CD34.
Isotype control antibodies served as negative controls to validate specificity. (D) The Protein expression of mesenchymal markers, CD105 and
CD73 in iMSCs was significant and confirmed by immunofluorescence staining.
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corroborated by the high protein expression levels of CD73 and

CD105 markers in immunofluorescent staining (Figure 3D).

Trilineage differentiation potential of
iMSCs into osteocytes, chondrocytes, and
adipocytes

Furthermore, these iMSCs were evaluated for their multipotent

differentiation potential into induced osteocytes (iOSTs), induced

adipocytes (iADIPO), and induced chondrocytes (iCHON). For

osteocyte differentiation, iMSCswere cultured in iMSCmedium and

then replaced with osteocyte differentiation medium. Subsequently,

they were cultured in osteocyte mineralization medium for 2 weeks.

The morphological changes of the cells during the osteocyte

differentiation process were observed under phase-contrast

microscopy (Supplementary Figure S4). The qRT-PCR analysis

showed the mRNA expression of the osteocyte-specific gene

SSP1 was significantly increased in the iOST (Figure 4A).

Furthermore, the presence of calcium deposits in the iOSTs was

clearly highlighted by Alizarin Red staining, indicating their role in

bone mineralization and calcium regulation, which are essential for

bone strength and structure (Figure 4B). The iMSCs were further

differentiated into iCHONs. The differentiated iCHONs showed

significantly increased expression levels of the chondrocyte-specific

marker collagen-2 compared to the undifferentiated iMSC control

(Figure 4C). Multiple stained areas were visible on the cultured plate

when subjected to alcian blue staining, which specifically highlights

chondrocytes (Figure 4D). The iMSCs also demonstrated their

ability to differentiate into adipocytes. The resulting adipocytes

displayed high expression of the adipocyte-specific marker

adiponectin, confirming pure clones (Figure 4E). Furthermore,

the deposition of fat and lipid droplets in iADIPO cells was

confirmed by oil red O staining (Figure 4F). Overall, our data

clearly indicate that iMSCs possessmarkedly superiormultipotential

differentiation abilities, similar to UC-MSCs, highlighting their

greater potential for diverse clinical applications.

Comparative analysis of anti-
inflammatory characteristics of iMSCs
with standard MSCs

The anti- inflammatory cytokines play a crucial role in

regulating the immune response and counteracting the effects

of pro-inflammatory cytokines [35]. In the present study, we

FIGURE 4
Trilineage differentiation of iMSCs. (A) Comparative analysis of SSP1 expression in iOSTs, iMSCs, and control cells. iOSTs exhibited significantly
higher expression of the osteocyte-specific gene SSP1 compared to iMSCs and control cells (****p < 0.00001). (B) The calcium depositions of these
cells were prominently stained by Alizarin Red. (C) The expression of the chondrocyte-specificmarker collagen-2 was significantly higher in induced
chondrocyte differentiated cells (iCHON) compared to iMSCs and control cells (**p < 0.001, ***p < 0.0001). (D) Alcian blue staining of iCHON
cell colonies, revealing several stained areas on the culture plate, indicative of chondrocyte-specific matrix production. (E) In adipocyte
differentiation, the induced adipocyte (iADIPO) cells showed significantly higher expression of the adiponectin gene compared to iMSCs and control
cells (****p < 0.00001). (F) Induced adipocyte (iADIPO) cells positively stained with Oil Red O, indicating the presence of lipid droplets characteristic
of adipocytes.
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aimed to evaluate the anti-inflammatory potential of iMSCs by

comparing them to MSCs as the control group. To assess the

anti-inflammatory properties, both iMSCs and MSCs were

treated with lipopolysaccharides (LPS-Sigma-Aldrich). After

24 h, we examined the gene expression levels of major anti-

inflammatory cytokines such as IL-11, TGF-β and TSG-6, as well
as pro-inflammatory cytokines such as IL-6, and IL1β, using
qRT-PCR analysis. The results indicated that there was no

significant difference in the expression of these cytokines

between iMSCs and MSCs. Both cell types exhibited similar

gene expression patterns in response to the inflammatory

stimulus. Importantly, iMSCs showed a slightly higher

expression of IL-11, TGFα, and TSG6, which are known to be

anti-inflammatory markers (Figure 5A). On the other hand, the

expression of pro-inflammatory markers, including IL-1β, IL-6,
and IL-12α was relatively lower in iMSCs compared to MSCs,

although these differences were not statistically significant

(Figure 5B). The proinflammatory gene expression is lower

because of anti-inflammatory nature of iMSCs. These findings

suggest that iMSCs possess comparable anti-inflammatory

properties to MSCs, as evidenced by their ability to express

anti-inflammatory cytokines in response to an inflammatory

stimulus. While there were subtle differences in the expression

levels of certain cytokines, overall, iMSCs demonstrated similar

immunoregulatory capabilities to MSCs in the context of

inflammation.

Enhanced migratory and proliferative
abilities of iMSCs compared to MSCs

Scratch assay, an in vitromodel of cell migration, was used to

assess the migratory capacity of iMSCs compared to MSC. The

results revealed that iMSCs covered approximately 60% of the

scratch area, demonstrating a significantly higher migratory

capacity (three times greater than that of MSCs) 8 hours after

FIGURE 5
Comparative analysis of (A) pro-inflammatory (IL-1β, IL-6, IL-12α) and (B) anti-inflammatory (IL-11, TGF-β, TSG-6) gene expression in PDLF-
iMSCs and UCMSCs after 24 h of LPS stimulation, showing no significant differences in mRNA expression levels between the two cell types.
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the scratch was made (Figure 6A). These findings highlight the

superior migration ability of iMSCs in terms of covering the

scratch area. To evaluate cellular survival, differentiation ability,

and growth potential, a clonogenic assay was performed on

iMSCs and MSCs. This assay is an in vitro method that

measures how effectively a single cell can proliferate into a

substantial colony through clonal expansion. The results

demonstrated that iMSCs were capable of significantly

forming more colonies compared to MSCs (Figure 6B). This

indicates that iMSCs have a higher proliferation capacity than

MSCs. Apart from migratory and proliferative characteristics,

iMSCs also exhibited CD105 protein expression similar to MSCs,

as demonstrated through western blot analysis (Figure 6C).

These properties position iMSCs as an alternative autologous

source and a favorable option for clinical applications

compared to MSCs.

iMSCs for regenerative dentistry:
applications on collagen membranes

For regenerative dentistry applications, we programmed our

iMSCs to differentiate into terminally matured osteocytes. The

mRNA expression levels of early marker Podoplanin,

mineralizing marker DMP1, and mature or late markers

associated with osteocyte differentiation namely BSP, FGF23,

SOST, and SPARC were notably elevated in these differentiated

cells (Figure 7A). Furthermore, these cells were positively stained

with fluorescent antibodies for osteocalcin and DMP1,

confirming their osteocyte-like characteristics (Figure 7B).

APL staining and Alizarin Red staining revealed prominent

calcium deposits in the iOSTs (Figures 7C, D). These findings

collectively manifest that PDLF-iOSTs closely replicate the

properties of human osteocytes.

Subsequently, we transferred these cells PDLF-iOSTs onto a

collagen membrane (Figure 8A). After fixation and preparation,

cell adhesion was assessed using DAPI staining via

immunofluorescence microscopy and the ultrastructure was

examined with scanning electron microscopy (SEM). DAPI

staining displayed a substantial number of cells attached to

the membrane (Figure 8B), and SEM images provided insights

into the cell morphology and adhesion (Figure 8C). Overall,

these findings illustrate that PDLF-iOSTs successfully adhered

to the collagen membrane, underscoring their promising

potential for applications in regenerative medicine and tissue

engineering.

FIGURE 6
The migration and colony formation potential of PDLF-iMSCs compared to UCMSCs. (A) Scratch assay showing cell migration after 8 h. The
covered area in the PDLF-iMSCs is significantly larger than in the UCMSCs (**p < 0.001). (B) Colony formation of PDLF-iMSCs and UCMSCs after
2 weeks. PDLF-iMSCs formed more colonies with increased blue staining intensity compared to UCMSCs (***p < 0.0001). (C)Western blot analysis
demonstrating comparable CD105 (71 KDa) protein expression in PDLF-iMSCs and MSCs. GAPDA (36 KDa) protein serves as a loading control.
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Discussion

Regenerative dentistry has emerged as a promising

approach for repairing and replacing lost oral tissues and

organs. Advances in molecular biology and the

understanding of tissue development genes have paved the

way for developing functional and biocompatible oral tissues.

Teeth and their supporting tissues, such as PDLF, are easily

accessible source of stem cells, making them highly relevant

for personalized regenerative therapies [36, 37]. The PDLF

cells can be conveniently isolated during routine procedures,

such as tooth extractions, third molar removal, makes them a

compelling option for regenerative treatments, particularly in

the field of personalized dentistry [38]. Studies have shown

that MSCs are the most used cell type in regenerative

dentistry [39]. However, MSCs face challenges such as

limited survival and proliferation in harsh environments

[40–42], immune rejection risks [43], donor age-related

cell senescence [44] and oncogenic potential due to

prolonged in vitro culture [45].

To address these challenges, our study utilized a novel,

viral- free reprogramming strategy [31] combining messenger

RNA (mRNA) and microRNA (miRNA), to generate iPSCs

from PDLF cells. This method eliminates the safety concerns

associated with viral vectors and resulted in iPSCs with robust

regenerative properties and trilineage differentiation potential,

a crucial factor for their therapeutic use. The PDLF-derived

iMSCs demonstrated strong differentiation capacities into

osteocyte, adipocyte, and chondrocyte, comparable to other

sources of MSCs but with the advantage of a minimally

invasive collection process. These findings align with

previous research on urinary epithelial-derived iMSCs,

further validating the regenerative capabilities of iMSCs

from various sources [31].

iMSCs have demonstrated superior immune suppression

compared to MSCs, as supported by previous studies [46]. To

further explore this, we subjected both iMSCs and MSCs to

LPS to assess their inflammatory properties. Our findings

revealed that the iMSCs showed mild inflammatory and

high anti-inflammatory responses when exposed to LPS

which is comparable to those of MSCs, indicating that

iMSCs maintain immune regulatory functions. LPS is

indeed a potent stimulator of immune cells; however, in the

context of iMSCs, it exhibits a more moderate stimulatory

effect. iMSCs are known for their anti-inflammatory

properties, which could mitigate the typical

FIGURE 7
Osteocyte differentiation potential of iMSCs. (A) Expression levels of osteocyte-specific genes in PDL-iOSTs at days 9 and 13, compared to PDLF
and PDLF-iMSCs. Significant increases in gene expression in PDL-iOSTs over time are indicated (*p < 0.01, **p < 0.001, ***p < 0.0001, ****p <
0.00001). (B) Immunofluorescence analysis of PDLF-iOSTs demonstrating the expression of DMP1 (red) and osteocalcin (green) proteins.
Mineralization and calcium deposition in PDLF-iOSTs detected by (C) ALP and (D) Alizarin Red (ALZ) staining. The intensity of staining, indicative
of mineralization, was measured using ImageJ software to assess the area of staining.
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proinflammatory response to LPS. This suggests that iMSCs

retain the immune-regulatory functions typical of iMSCs,

making them a promising candidate for treating

inflammatory conditions, not only in dental applications

but also in broader clinical settings.

In our study, iMSC-derived osteocytes successfully adhered

to commercially available collagen-based resorbable membranes,

demonstrating their suitability for bone regeneration and guided

tissue repair. The ability of iOSTs to adhere to a commercial

collagen membrane is significant, as it demonstrates that these

cells can attach, migrate, and potentially proliferate, key

characteristics for their application in tissue engineering,

particularly in bone regeneration and wound healing. The

chemically crosslinked collagen membrane used in this study

effectively supports guided bone regeneration by providing a

scaffold conducive to cell attachment and growth. Additionally,

its slower degradation rate helps maintain the structural integrity

and stability of the injury site, enhancing effective healing while

minimizing the risk of deformities [47]. Importantly, the use of

iOSTs on such membranes can serve a dual purpose: aiding in

bone regeneration prior to or during dental implant placement

and creating a favorable environment for successful guided bone

regeneration surgery. This approach holds promise for

addressing gaps in current regenerative strategies.

Our findings demonstrate that the iMSCs derived from

PDLF not only possess superior regenerative properties but also

offer a more accessible and cost-effective cell source for

regenerative therapies. The advantage of PDLF derived

iMSCs is that PDLFs will have periodontal niche which will

elucidate better periodontal regeneration and

craniomaxillofacial regeneration and they also have low

immunogenicity compared to blood and skin cells [48].

Moreover, the use of iMSCs derived from dental tissues for

clinical applications, such as bone regeneration and soft tissue

repair, could significantly improve the outcomes of regenerative

dental procedures, such as sinus lifts, bone augmentation, and

guided tissue regeneration. Our study also highlights the

advantages of iMSCs compared to umbilical cord-derived

MSCs, which are widely stored and used in clinical trials. In

many developing countries, there is a growing trend of storing

umbilical cord-derived MSCs at the time of delivery, resulting

in significant financial gains for stem cell storage companies.

Through this research, we aim to raise awareness that iMSCs

can be generated from adult body cells, such as PDLF, can

provide an equally effective or even potentially superior to

MSCs. This comparison underscores the feasibility of utilizing

easily accessible body-derived cells for therapeutic purposes.

While we acknowledge the limitation of donor variability and

FIGURE 8
Attachment of PDLF-iOSTs to a commercial collagen-basedmembrane. (A) A piece of collagenmembrane placed in a ring-shaped instrument.
(B) DAPI staining and fluorescent imaging of PDLF-iOSTs attachment on a collagen-based membrane. The left image shows the membrane alone,
the center image highlights the nuclei of attached and proliferated cells, and the right image displays themembranewith attached cells. A substantial
number of cells remained on the membrane following the preparation process. (C) SEM images of PDLF-iOSTs adhered to the collagen-based
membrane through their extended processes.
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the small sample size, the intent of this study is to explore this

alternative approach and establish a basis for further, more

extensive research in the future.

In conclusion, PDLF-derived iMSCs offer a cost-effective,

accessible, and viable cell source with superior regenerative

properties for dental and craniofacial applications. Further

studies should focus on refining these techniques, addressing

and explore their clinical application in a broader range of

therapeutic contexts.
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